DOI QR코드

DOI QR Code

SOME RIGIDITY CHARACTERIZATIONS OF EINSTEIN METRICS AS CRITICAL POINTS FOR QUADRATIC CURVATURE FUNCTIONALS

  • Huang, Guangyue (College of Mathematics and Information Science Henan Normal University) ;
  • Ma, Bingqing (College of Mathematics and Information Science Henan Normal University) ;
  • Yang, Jie (College of Mathematics and System Science Xinjiang University)
  • Received : 2019.11.21
  • Accepted : 2020.03.25
  • Published : 2020.11.30

Abstract

We study rigidity results for the Einstein metrics as the critical points of a family of known quadratic curvature functionals involving the scalar curvature, the Ricci curvature and the Riemannian curvature tensor, characterized by some pointwise inequalities involving the Weyl curvature and the traceless Ricci curvature. Moreover, we also provide a few rigidity results for locally conformally flat critical metrics.

Keywords

References

  1. M. T. Anderson, Extrema of curvature functionals on the space of metrics on 3-manifolds, Calc. Var. Partial Differential Equations 5 (1997), no. 3, 199-269. https://doi.org/10.1007/s005260050066
  2. A. Barros and A. Da Silva, On locally conformally flat critical metrics for quadratic functionals, Ann. Global Anal. Geom. 52 (2017), no. 1, 1-9. https://doi.org/10.1007/s10455-016-9541-1
  3. A. L. Besse, Einstein Manifolds, reprint of the 1987 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2008.
  4. H.-D. Cao and Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013), no. 6, 1149-1169. https://doi.org/10.1215/00127094-2147649
  5. G. Catino, On conformally flat manifolds with constant positive scalar curvature, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2627-2634. https://doi.org/10.1090/proc/12925
  6. G. Catino, Some rigidity results on critical metrics for quadratic functionals, Calc. Var. Partial Differential Equations 54 (2015), no. 3, 2921-2937. https://doi.org/10.1007/s00526-015-0889-z
  7. G. Catino, Integral pinched shrinking Ricci solitons, Adv. Math. 303 (2016), 279-294. https://doi.org/10.1016/j.aim.2016.08.021
  8. H. Fu and J. Peng, Rigidity theorems for compact Bach-flat manifolds with positive constant scalar curvature, Hokkaido Math. J. 47 (2018), no. 3, 581-605. https://doi.org/10.14492/hokmj/1537948832
  9. M. J. Gursky and J. A. Viaclovsky, A new variational characterization of three-dimensional space forms, Invent. Math. 145 (2001), no. 2, 251-278. https://doi.org/10.1007/s002220100147
  10. M. J. Gursky and J. A. Viaclovsky, Rigidity and stability of Einstein metrics for quadratic curvature functionals, J. Reine Angew. Math. 700 (2015), 37-91. https://doi.org/10.1515/crelle-2013-0024
  11. D. Hilbert, Die Grundlagen der Physik, Ann. Sci. Ecole Norm. Sup. 4 (1915), 461-472.
  12. Z. Hu and H. Li, A new variational characterization of n-dimensional space forms, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3005-3023. https://doi.org/10.1090/S0002-9947-03-03486-X
  13. Z. Hu, S. Nishikawa, and U. Simon, Critical metrics of the Schouten functional, J. Geom. 98 (2010), no. 1-2, 91-113. https://doi.org/10.1007/s00022-010-0057-8
  14. G. Huang, Rigidity of Riemannian manifolds with positive scalar curvature, Ann. Global Anal. Geom. 54 (2018), no. 2, 257-272. https://doi.org/10.1007/s10455-018-9600-x
  15. G. Huang and L. Chen, Some characterizations on critical metrics for quadratic curvature functions, Proc. Amer. Math. Soc. 146 (2018), no. 1, 385-395. https://doi.org/10.1090/proc/13740
  16. G. Huang and Y. Wei, The classification of (m, ρ)-quasi-Einstein manifolds, Ann. Global Anal. Geom. 44 (2013), no. 3, 269-282. https://doi.org/10.1007/s10455-013-9366-0
  17. G. Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 21 (1985), no. 1, 47-62. http://projecteuclid.org/euclid.jdg/1214439463 https://doi.org/10.4310/jdg/1214439463
  18. F. Lamontagne, Une remarque sur la norme L2 du tenseur de courbure, C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), no. 3, 237-240.
  19. F. Lamontagne, A critical metric for the L2-norm of the curvature tensor on S3, Proc. Amer. Math. Soc. 126 (1998), no. 2, 589-593. https://doi.org/10.1090/S0002-9939-98-04171-9
  20. B. Ma and G. Huang, Rigidity of complete noncompact Riemannian manifolds with harmonic curvature, J. Geom. Phys. 124 (2018), 233-240. https://doi.org/10.1016/j.geomphys.2017.11.004
  21. B. Ma, G. Huang, X. Li, and Y. Chen, Rigidity of Einstein metrics as critical points of quadratic curvature functionals on closed manifolds, Nonlinear Anal. 175 (2018), 237-248. https://doi.org/10.1016/j.na.2018.05.017
  22. W. Sheng and L. Wang, Bach-flat critical metrics for quadratic curvature functionals, Ann. Global Anal. Geom. 54 (2018), no. 3, 365-375. https://doi.org/10.1007/s10455-018-9606-4