DOI QR코드

DOI QR Code

GEVREY REGULARITY AND TIME DECAY OF THE FRACTIONAL DEBYE-HÜCKEL SYSTEM IN FOURIER-BESOV SPACES

  • Cui, Yiwen (School of Applied Mathematics Nanjing University of Finance and Economics) ;
  • Xiao, Weiliang (School of Applied Mathematics Nanjing University of Finance and Economics)
  • Received : 2019.12.01
  • Accepted : 2020.06.29
  • Published : 2020.11.30

Abstract

In this paper we mainly study existence and regularity of mild solutions to the parabolic-elliptic system of drift-diffusion type with small initial data in Fourier-Besov spaces. To be more detailed, we will explain that global-in-time mild solutions are well-posed and Gevrey regular by means of multilinear singular integrals and Fourier localization argument. Furthermore, we can get time decay rate estimate of mild solutions in Fourier-Besov spaces.

Keywords

Acknowledgement

The research was supported by the NNSF of China under grant No. 11601223.

References

  1. N. Ben Abdallah, F. Mehats, and N. Vauchelet, A note on the long time behavior for the drift-diffusion-Poisson system, C. R. Math. Acad. Sci. Paris 339 (2004), no. 10, 683-688. https://doi.org/10.1016/j.crma.2004.09.025
  2. P. Biler and J. Dolbeault, Long time behavior of solutions of Nernst-Planck and Debye-Huckel drift-diffusion systems, Ann. Henri Poincare 1 (2000), no. 3, 461-472. https://doi.org/10.1007/s000230050003
  3. P. Biler, W. Hebisch, and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Anal. 23 (1994), no. 9, 1189-1209. https://doi.org/10.1016/0362-546X(94)90101-5
  4. I. Chueshov, M. Polat, and S. Siegmund, Gevrey regularity of global attractor for generalized Benjamin-Bona-Mahony equation, Mat. Fiz. Anal. Geom. 11 (2004), no. 2, 226-242.
  5. A. B. Ferrari and E. S. Titi, Gevrey regularity for nonlinear analytic parabolic equations, Comm. Partial Differential Equations 23 (1998), no. 1-2, 1-16. https://doi.org/10.1080/03605309808821336
  6. C. Foia, s and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9) 58 (1979), no. 3, 339-368.
  7. C. Foias, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 (1989), no. 2, 359-369. https://doi.org/10.1016/0022-1236(89)90015-3
  8. H. Gajewski, On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors, Z. Angew. Math. Mech. 65 (1985), no. 2, 101-108. https://doi.org/10.1002/zamm.19850650210
  9. H. Gajewski and K. Groger, On the basic equations for carrier transport in semiconductors, J. Math. Anal. Appl. 113 (1986), no. 1, 12-35. https://doi.org/10.1016/0022-247X(86)90330-6
  10. G. Karch, Scaling in nonlinear parabolic equations, J. Math. Anal. Appl. 234 (1999), no. 2, 534-558. https://doi.org/10.1006/jmaa.1999.6370
  11. M. Kurokiba and T. Ogawa, Well-posedness for the drift-diffusion system in Lp arising from the semiconductor device simulation, J. Math. Anal. Appl. 342 (2008), no. 2, 1052-1067. https://doi.org/10.1016/j.jmaa.2007.11.017
  12. P. G. Lemarie-Rieusset, Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton, FL, 2002. https://doi.org/10.1201/9781420035674
  13. W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species, J. Differential Equations 246 (2009), no. 1, 428-451. https://doi.org/10.1016/j.jde.2008.09.010
  14. W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations 22 (2010), no. 3, 413-437. https://doi.org/10.1007/s10884-010-9186-x
  15. Y. Luo, Well-posedness of a Cauchy problem involving nonlinear fractal dissipative equations, Appl. Math. E-Notes 10 (2010), 112-118.
  16. C. Miao, B. Yuan, and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal. 68 (2008), no. 3, 461-484. https://doi.org/10.1016/j.na.2006.11.011
  17. M. S. Mock, An initial value problem from semiconductor device theory, SIAM J. Math. Anal. 5 (1974), 597-612. https://doi.org/10.1137/0505061
  18. T. Ogawa and M. Yamamoto, Asymptotic behavior of solutions to drift-diffusion system with generalized dissipation, Math. Models Methods Appl. Sci. 19 (2009), no. 6, 939-967. https://doi.org/10.1142/S021820250900367X
  19. S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer Science & Business Media, 2012.
  20. G. Wu and J. Yuan, Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces, J. Math. Anal. Appl. 340 (2008), no. 2, 1326-1335. https://doi.org/10.1016/j.jmaa.2007.09.060
  21. J. Zhao, Gevrey regularity of mild solutions to the parabolic-elliptic system of driftdiffusion type in critical Besov spaces, J. Math. Anal. Appl. 448 (2017), no. 2, 1265-1280. https://doi.org/10.1016/j.jmaa.2016.11.050
  22. J. Zhao, Q. Liu, and S. Cui, Existence of solutions for the Debye-Huckel system with low regularity initial data, Acta Appl. Math. 125 (2013), 1-10. https://doi.org/10.1007/s10440-012-9777-0