DOI QR코드

DOI QR Code

LOCALIZATION OF THE VORTICITY DIRECTION CONDITIONS FOR THE 3D SHEAR THICKENING FLUIDS

  • Yang, Jiaqi (School of Mathematics and Statistics Northwestern Polytechnical University)
  • 투고 : 2020.01.03
  • 심사 : 2020.07.09
  • 발행 : 2020.11.30

초록

It is obtained that a localization of the vorticity direction coherence conditions for the regularity of the 3D shear thickening fluids to an arbitrarily small space-time cylinder. It implies the regularity of any geometrically constrained weak solution of the system considered independently of the type of the spatial domain or the boundary conditions.

키워드

참고문헌

  1. H.-O. Bae, K. Kang, J. Lee, and J. Wolf, Regularity for Ostwald-de Waele type shear thickening fluids, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 1, 1-19. https://doi.org/10.1007/s00030-014-0273-2
  2. H. Beirao da Veiga, Vorticity and regularity for flows under the Navier boundary condition, Commun. Pure Appl. Anal. 5 (2006), no. 4, 907-918. https://doi.org/10.3934/cpaa.2006.5.907
  3. H. Beirao da Veiga, Vorticity and regularity for viscous incompressible flows under the Dirichlet boundary condition. Results and related open problems, J. Math. Fluid Mech. 9 (2007), no. 4, 506-516. https://doi.org/10.1007/s00021-005-0210-6
  4. H. Beirao da Veiga and L. C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations 15 (2002), no. 3, 345-356.
  5. H. Beirao da Veiga and L. C. Berselli, Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary, J. Differential Equations 246 (2009), no. 2, 597-628. https://doi.org/10.1016/j.jde.2008.02.043
  6. L. C. Berselli, L. Diening, and M. Ruzicka, Existence of strong solutions for incompressible fluids with shear dependent viscosities, J. Math. Fluid Mech. 12 (2010), no. 1, 101-132. https://doi.org/10.1007/s00021-008-0277-y
  7. P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J. 42 (1993), no. 3, 775-789. https://doi.org/10.1512/iumj.1993.42.42034
  8. L. Diening and M. Ruzicka, Strong solutions for generalized Newtonian fluids, J. Math. Fluid Mech. 7 (2005), no. 3, 413-450. https://doi.org/10.1007/s00021-004-0124-8
  9. Z. Grujic, Localization and geometric depletion of vortex-stretching in the 3D NSE, Comm. Math. Phys. 290 (2009), no. 3, 861-870. https://doi.org/10.1007/s00220-008-0726-8
  10. Z. Grujic and A. Ruzmaikina, Interpolation between algebraic and geometric conditions for smoothness of the vorticity in the 3D NSE, Indiana Univ. Math. J. 53 (2004), no. 4, 1073-1080. https://doi.org/10.1512/iumj.2004.53.2415
  11. Z. Grujic and Q. S. Zhang, Space-time localization of a class of geometric criteria for preventing blow-up in the 3D NSE, Comm. Math. Phys. 262 (2006), no. 3, 555-564. https://doi.org/10.1007/s00220-005-1437-z
  12. V. A. Kondrat'ev and O. A. Olenik, Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities, Russ. Math. Surv, 43 (1988), no. 5, 65-119. https://doi.org/10.1070/RM1988v043n05ABEH001945
  13. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York, 1969.
  14. J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), no. 1, 193-248. https://doi.org/10.1007/BF02547354
  15. J. Malek, J. Necas, M. Rokyta, and M. Ruzicka, Weak and measure-valued solutions to evolutionary PDEs, Applied Mathematics and Mathematical Computation, 13, Chapman & Hall, London, 1996. https://doi.org/10.1007/978-1-4899-6824-1
  16. J. Malek, J. Necas, and M. Ruzicka, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p ≥ 2, Adv. Differential Equations 6 (2001), no. 3, 257-302.
  17. M. Pokorny, Cauchy problem for the non-Newtonian viscous incompressible fluid, Appl. Math. 41 (1996), no. 3, 169-201. https://doi.org/10.21136/AM.1996.134320
  18. G. Prodi, Un teorema di unicita per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. (4) 48 (1959), 173-182. https://doi.org/10.1007/BF02410664
  19. J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 9 (1962), 187-195. https://doi.org/10.1007/BF00253344
  20. J. Serrin, The initial value problem for the Navier-Stokes equations, in Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962), 69-98, Univ. of Wisconsin Press, Madison, WI, 1963.
  21. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970.
  22. J. Wolf, Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. Math. Fluid Mech. 9 (2007), no. 1, 104-138. https://doi.org/10.1007/s00021-006-0219-5
  23. J. Yang, Geometric Constrains for Global Regularity of 3D Shear Thickening Fluids, To apprear in Acta Mathematicae Applicatae Sinica (English series).