DOI QR코드

DOI QR Code

Prediction of the employment ratio by industry using constrainted forecast combination

제약하의 예측조합 방법을 활용한 산업별 고용비중 예측

  • Kim, Jeong-Woo (Department of Economics, Gangneung Wonju National University)
  • 김정우 (강릉원주대학교 경제학과)
  • Received : 2020.08.24
  • Accepted : 2020.11.20
  • Published : 2020.11.28

Abstract

In this study, we predicted the employment ratio by the export industry using various machine learning methods and verified whether the prediction performance is improved by applying the constrained forecast combination method to these predicted values. In particular, the constrained forecast combination method is known to improve the prediction accuracy and stability by imposing the sum of predicted values' weights up to one. In addition, this study considered various variables affecting the employment ratio of each industry, and so we adopted recursive feature elimination method that allows efficient use of machine learning methods. As a result, the constrained forecast combination showed more accurate prediction performance than the predicted values of the machine learning methods, and in particular, the stability of the prediction performance of the constrained forecast combination was higher than that of other machine learning methods.

본 연구는 우리나라 수출 분야의 산업별 고용비중을 다양한 머신러닝 기법을 활용하여 예측하고, 예측성능을 높이기 위하여 머신러닝 기법 예측값들에 예측조합 기법을 적용하였다. 특히, 본 연구에서는 각 머신러닝 기법 예측값들에 부여되는 가중치의 합을 1로 설정하는 제약하의 예측조합 기법을 사용하여 예측의 정확성과 안정성을 확보하고자 하였다. 또한, 본 연구는 산업별 고용비중에 영향을 주는 다양한 변수를 고려하기 위하여 재귀적특성제거 방법을 사용하여 주요 변수를 선별한 후, 머신러닝 기법에 적용함으로써 예측과정 상에서의 효율성을 높였다. 분석결과, 예측조합 방법에 따른 예측값은 머신러닝 기법의 예측값들보다 실제의 산업 고용비중에 근접한 것으로 나타났으며, 머신러닝 기법의 예측값들이 큰 변동성을 보이는 것과 달리 제약하의 예측조합 기법은 안정적인 예측값을 나타내었다.

Keywords

References

  1. J. M. Bates & C. W. J. Granger. (1969). The Combination of Forecasts. Journal of the Operational Research Society, 20(4), 451-468. DOI : 10.1057/jors.1969.103
  2. Y. M. Yoo, H. B. Kim & S. H. Joo. (2010). An Analysis on the Competitiveness based on Industrial Structure Changes in Busan. Journal of Local Government Studis, 14(3), 295-313.
  3. B. S. Kim. (2008). Job Creation of Service Industry and Changes in Employment Structure in Terms of the Quality of Job. Monthly Labor Review, 40, 23-35.
  4. S. J. Kim & B. H. Choi. Input-Output Structural Decomposition Analysis on the Structure of Employment Change in Korean Manufacturing Industry. Journal of Industrial Economics and Business, 32(1), 375-403. DOI : 10.22558/jieb.2019.02.32.1.375.
  5. I. S. Jang. (2017). The effect of labor mobility on the relationship between technology innovation and employment. Sejong : KLI.
  6. L. K. Chung & J. B. Hong. (2018). An Empirical Study on the Relationship between Investment and Employment Growth : Focusing on the Differences between Industries. Korean Jouranl of Business Administration, 31(7), 1363-1382. DOI : 10.18032/kaaba.2018.31.7.1363.
  7. I. H. Song. (2009). An Economic Analysis on the Effect of Facility Investment on Productivity and Employment. Productivity Review, 23(3), 259-278. https://doi.org/10.15843/kpapr.23.3.200909.259
  8. D. K. Kim & S. Y. Park. (2013). Impact on Production and Employment of Consumption Structure Changes by Increasing Proportion of Old Population. Journal of Industrial Economics and Business, 26(6), 2519-2546.
  9. D. W. Kang. (2020). Effect of change in consumption patterns on employment. Sejong : KLI.
  10. J. H. Lee & J. Y. Hwang. (2016). The Employment Creation Effects of Exogenous Fiscal Shocks in Korea. Ordo Economics Journal, 19(1), 19-40. DOI : 10.20436/OEJ.2016.19.1.019.
  11. J. H. Lee & E. S. Lim. (2017). R&D Investment and Employment: Evidence from 15 Regions. The Korea Journal of Local Public Finance, 22(2), 167-190.
  12. M. S. Park. (2008). Analysis of dynamic relationship between exchange rate fluctuations and employment. Sejong : KIET.
  13. C. O. Rhee. (2011). Special Section Papers : Business Cycle and SME's Government-Supported Financing. Asia Pacific Journal of Small Business, 33(1), 17-32.
  14. J. E. Choi & D. W. Shin. (2019). The roles of differencing and dimension reduction in machine learning forecasting of employment level using the FRED big data. Communications for Statistical Applications and Methods, 26(5), 497-506. DOI : 10.29220/CSAM.2019.26.5.497
  15. D. H. Lee & T. H. Kim. (2020). Study on the Prediction Model for Employment of University Graduates Using Machine Learning Classification. The Journal of Information Systems, 29(2), 287-306. DOI : 10.5859/KAIS.2020.29.2.287
  16. S. S. Alduayj & K. Rajpoot. (2018, 18-19 Nov. 2018). Predicting Employee Attrition using Machine Learning. Paper presented at the 2018 International Conference on Innovations in Information Technology (IIT). DOI : 10.1109/INNOVATIONS.2018.8605976
  17. A. Adhikari. (2009). Factors affecting employee attrition: a multiple regression approach. IUP Journal of Management Research, 8(5), 38.
  18. M. Savic. (2006). Principal components analysis of employment in Eastern Europe. Panoeconomicus, 53(4), 427-437. DOI : 10.2298/PAN0604427S
  19. Y. Zhao, M. K. Hryniewicki, F. Cheng, B. Fu & X. Zhu. (2018). Employee turnover prediction with machine learning: A reliable approach. Paper presented at the Proceedings of SAI intelligent systems conference. DOI : 10.1007/978-3-030-01057-7
  20. N. J. Hsu, H. L. Hung & Y. M. Chang. (2008). Subset selection for vector autoregressive processes using lasso. Computational Statistics & Data Analysis, 52(7), 3645-3657. DOI : 10.1016/j.csda.2007.12.004
  21. A. Kreiner & J. V. Duca. (2019). Can machine learning on economic data better forecast the unemployment rate? Applied Economics Letters, 27(17), 1434-1437. DOI : 10.1080/13504851.2019.1688237
  22. T. Hastie, R. Tibshirani & J. Friedman. (2009). The elements of statistical learning: data mining, inference, and prediction, Springer Science & Business Media. DOI : 10.1111/j.1751-5823.2009.00095_18.x
  23. R. Tibshirani. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288. DOI : 10.1111/j.1467-9868.2011.00771.x
  24. V. Cherkassky & Y. Ma. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17(1), 113-126. DOI : 10.1016/S0893-6080(03)00169-2
  25. R. T. Clemen. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559-583. DOI : 10.1016/0169-2070(89)90012-5
  26. C. W. Granger & R. Ramanathan. (1984). Improved methods of combining forecasts. Journal of Forecasting, 3(2), 197-204. DOI : 10.1002/for.3980030207
  27. C. Aksu & S. I. Gunter. (1992). An empirical analysis of the accuracy of SA, OLS, ERLS and NRLS combination forecasts. International Journal of Forecasting, 8(1), 27-43. DOI : https://doi.org/10.1016/0169-2070(92)90005-T
  28. I. Guyon, J. Weston, S. Barnhill & V. Vapnik (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3), 389-422. DOI : 10.1023/A:1012487302797
  29. K. E. Rao & G. A. (2020). Rao, Ensemble learning with recursive feature elimination integrated software effort estimation: a novel approach. EVolutionary Intelligence, 1-12. DOI : 10.1007/s12065-020-00360-5