DOI QR코드

DOI QR Code

Helper virus-free gutless adenovirus (HF-GLAd): a new platform for gene therapy

  • Liu, Jida (College of Pharmacy, Chung-Ang University) ;
  • Seol, Dai-Wu (College of Pharmacy, Chung-Ang University)
  • Received : 2020.08.18
  • Published : 2020.11.30

Abstract

Gene therapy is emerging as a treatment option for inherited genetic diseases. The success of this treatment approach greatly depends upon gene delivery vectors. Researchers have attempted to harness the potential of viral vectors for gene therapy applications over many decades. Among the viral vectors available, gutless adenovirus (GLAd) has been recognized as one of the most promising vectors for in vivo gene delivery. GLAd is constructed by deleting all the viral genes from an adenovirus. Owing to this structural feature, the production of GLAd requires a helper that supplies viral proteins in trans. Conventionally, the helper is an adenovirus. Although the helper adenovirus efficiently provides helper functions, it remains as an unavoidable contaminant and also generates replication-competent adenovirus (RCA) during the production of GLAd. These two undesirable contaminants have raised safety concerns and hindered the clinical applications of GLAd. Recently, we developed helper virus-free gutless adenovirus (HF-GLAd), a new version of GLAd, which is produced by a helper plasmid instead of a helper adenovirus. Utilization of this helper plasmid eliminated the helper adenovirus and RCA contamination in the production of GLAd. HF-GLAd, devoid of helper adenovirus and RCA contaminants, will facilitate its clinical applications. In this review, we discuss the characteristics of adenoviruses, the evolution and production of adenoviral vectors, and the unique features of HF-GLAd as a new platform for gene therapy. Furthermore, we highlight the potential applications of HF-GLAd as a gene delivery vector for the treatment of various inherited genetic diseases.

Keywords

References

  1. Blaese RM, Culver KW, Miller AD et al (1995) T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270, 475-480 https://doi.org/10.1126/science.270.5235.475
  2. Bordignon C, Notarangelo LD, Nobili N et al (1995) Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science 270, 470-475 https://doi.org/10.1126/science.270.5235.470
  3. Kohn DB, Weinberg KI, Nolta JA et al (1995) Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med 1, 1017-1023 https://doi.org/10.1038/nm1095-1017
  4. Yla-Herttuala S (2012) Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 20, 1831-1832 https://doi.org/10.1038/mt.2012.194
  5. Darrow JJ (2019) Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov Today 24, 949-954 https://doi.org/10.1016/j.drudis.2019.01.019
  6. Mahajan R (2019) Onasemnogene abeparvovec for spinal muscular atrophy: the costlier drug ever. Int J Appl Basic Med Res 9, 127-128 https://doi.org/10.4103/ijabmr.IJABMR_190_19
  7. Lee CS, Bishop ES, Zhang R et al (2017) Adenovirusmediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 4, 43-63 https://doi.org/10.1016/j.gendis.2017.04.001
  8. Rowe WP, Huebner RJ, Gilmore LK, Parrott RH and Ward TG (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84, 570-573 https://doi.org/10.3181/00379727-84-20714
  9. Hilleman MR and Werner JH (1954) Recovery of new agent from patients with acute respiratory illness. Proc Soc Exp Biol Med 85, 183-188 https://doi.org/10.3181/00379727-85-20825
  10. Crystal RG (2014) Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther 25, 3-11 https://doi.org/10.1089/hum.2013.2527
  11. Gaynor RB and Berk AJ (1983) Cis-acting induction of adenovirus transcription. Cell 33, 683-693 https://doi.org/10.1016/0092-8674(83)90011-9
  12. Lichtenstein DL, Toth K, Doronin K, Tollefson AE and Wold WS (2004) Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 23, 75-111 https://doi.org/10.1080/08830180490265556
  13. Graham FL, Smiley J, Russell WC and Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59-74 https://doi.org/10.1099/0022-1317-36-1-59
  14. Louis N, Evelegh C and Graham FL (1997) Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology 233, 423-429 https://doi.org/10.1006/viro.1997.8597
  15. Murakami P, Pungor E, Files J et al (2002) A single short stretch of homology between adenoviral vector and packaging cell line can give rise to cytopathic effect-inducing, helper-dependent E1-positive particles. Hum Gene Ther 13, 909-920 https://doi.org/10.1089/10430340252939023
  16. Lochmuller H, Jani A, Huard J et al (1994) Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1 + delta E3) during multiple passages in 293 cells. Hum Gene Ther 5, 1485-1491 https://doi.org/10.1089/hum.1994.5.12-1485
  17. Smith JG and Eck SL (1999) Molecular characterization of an adenoviral vector resulting from both homologous and nonhomologous recombination. Cancer Gene Ther 6, 475-481 https://doi.org/10.1038/sj/cgt/7700062
  18. Simek S, Byrnes A, Bauer S (2002) FDA Perspectives on the use of the adenovirus reference material. BioProcess J 1, 40-42 https://doi.org/10.12665/J13.Simek
  19. Fallaux FJ, Bout A, van der Velde I et al (1998) New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 9, 1909-1917 https://doi.org/10.1089/hum.1998.9.13-1909
  20. Imperiale MJ, Kao HT, Feldman LT, Nevins JR and Strickland S (1984) Common control of the heat shock gene and early adenovirus genes: evidence for a cellular E1A-like activity. Mol Cell Biol 4, 867-874 https://doi.org/10.1128/MCB.4.5.867
  21. Lozier JN, Csako G, Mondoro TH et al (2002) Toxicity of a first-generation adenoviral vector in rhesus macaques. Hum Gene Ther 13, 113-124 https://doi.org/10.1089/10430340152712665
  22. Jiang H, Rivera-Molina Y, Gomez-Manzano C et al (2017) Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination. Cancer Res 77, 3894-3907 https://doi.org/10.1158/0008-5472.CAN-17-0468
  23. Swaminathan S and Thimmapaya B (1995) Regulation of adenovirus E2 transcription unit; in the molecular repertoire of adenoviruses III: biology and pathogenesis, Doerfler W and Bohm P (eds.), 177-194, Springer Berlin Heidelberg, Berlin, Heidelberg
  24. Evans JD and Hearing P (2003) Distinct roles of the adenovirus E4 ORF3 protein in viral DNA replication and inhibition of genome concatenation. J Virol 77, 5295-5304 https://doi.org/10.1128/JVI.77.9.5295-5304.2003
  25. O'Neal WK, Zhou H, Morral N et al (1998) Toxicological comparison of E2a-deleted and first-generation adenoviral vectors expressing alpha1-antitrypsin after systemic delivery. Hum Gene Ther 9, 1587-1598 https://doi.org/10.1089/hum.1998.9.11-1587
  26. Jozkowicz A, Dulak J, Nanobashvili J, Polterauer P, Prager M and Huk I (2002) Gutless adenoviral vectors - promising tools for gene therapy. European Surgery-Acta Chirurgica Austriaca 34, 95-100 https://doi.org/10.1046/j.1563-2563.2002.02033.x
  27. Bett AJ, Prevec L and Graham FL (1993) Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 67, 5911-5921 https://doi.org/10.1128/jvi.67.10.5911-5921.1993
  28. Alemany R, Dai Y, Lou YC et al (1997) Complementation of helper-dependent adenoviral vectors: size effects and titer fluctuations. J Virol Methods 68, 147-159 https://doi.org/10.1016/S0166-0934(97)00129-8
  29. Parks RJ and Graham FL (1997) A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J Virol 71, 3293-3298 https://doi.org/10.1128/jvi.71.4.3293-3298.1997
  30. Parks RJ, Bramson JL, Wan Y, Addison CL and Graham FL (1999) Effects of stuffer DNA on transgene expression from helper-dependent adenovirus vectors. J Virol 73, 8027-8034 https://doi.org/10.1128/jvi.73.10.8027-8034.1999
  31. Schiedner G, Hertel S, Johnston M, Biermann V, Dries V and Kochanek S (2002) Variables affecting in vivo performance of high-capacity adenovirus vectors. J Virol 76, 1600-1609 https://doi.org/10.1128/JVI.76.4.1600-1609.2002
  32. Sandig V, Youil R, Bett AJ et al (2000) Optimization of the helper-dependent adenovirus system for production and potency in vivo. Proc Natl Acad Sci U S A 97, 1002-1007 https://doi.org/10.1073/pnas.97.3.1002
  33. Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA and Graham FL (1996) A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci U S A 93, 13565-13570 https://doi.org/10.1073/pnas.93.24.13565
  34. Palmer D and Ng P (2003) Improved system for helperdependent adenoviral vector production. Mol Ther 8, 846-852 https://doi.org/10.1016/j.ymthe.2003.08.014
  35. Jager L, Hausl MA, Rauschhuber C, Wolf NM, Kay MA and Ehrhardt A (2009) A rapid protocol for construction and production of high-capacity adenoviral vectors. Nat Protoc 4, 547-564 https://doi.org/10.1038/nprot.2009.4
  36. Su Q, Sena-Esteves M and Gao G (2019) Purification of the recombinant adenovirus by cesium chloride gradient centrifugation. Cold Spring Harb Protoc 2019, pdb.prot 095547
  37. Ng P, Beauchamp C, Evelegh C, Parks R and Graham FL (2001) Development of a FLP/frt system for generating helper-dependent adenoviral vectors. Mol Ther 3, 809-815 https://doi.org/10.1006/mthe.2001.0323
  38. Cheshenko N, Krougliak N, Eisensmith RC and Krougliak VA (2001) A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene Ther 8, 846-854 https://doi.org/10.1038/sj/gt/3301459
  39. Kubo S, Saeki Y, Chiocca EA and Mitani K (2003) An HSV amplicon-based helper system for helper-dependent adenoviral vectors. Biochem Biophys Res Commun 307, 826-830 https://doi.org/10.1016/S0006-291X(03)01256-7
  40. Lee D, Liu J, Junn HJ, Lee EJ, Jeong KS and Seol DW (2019) No more helper adenovirus: production of gutless adenovirus (GLAd) free of adenovirus and replication-competent adenovirus (RCA) contaminants. Exp Mol Med 51, 1-18
  41. Wu N, Zhang H, Deng F et al (2014) Overexpression of Ad5 precursor terminal protein accelerates recombinant adenovirus packaging and amplification in HEK-293 packaging cells. Gene Ther 21, 629-637 https://doi.org/10.1038/gt.2014.40
  42. Stemmler MP, Hecht A and Kemler R (2005) E-cadherin intron 2 contains cis-regulatory elements essential for gene expression. Development 132, 965-976 https://doi.org/10.1242/dev.01662
  43. Harraghy N, Gaussin A and Mermod N (2008) Sustained transgene expression using MAR elements. Curr Gene Ther 8, 353-366 https://doi.org/10.2174/156652308786071032
  44. Suzuki M, Cela R, Clarke C, Bertin TK, Mourino S and Lee B (2010) Large-scale production of high-quality helperdependent adenoviral vectors using adherent cells in cell factories. Hum Gene Ther 21, 120-126 https://doi.org/10.1089/hum.2009.096
  45. Smaill F, Jeyanathan M, Smieja M et al (2013) A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med 5, 205ra134 https://doi.org/10.1126/scitranslmed.3006843
  46. McElrath MJ, De Rosa SC, Moodie Z et al (2008) HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 372, 1894-1905 https://doi.org/10.1016/S0140-6736(08)61592-5
  47. Harro C, Sun X, Stek JE et al (2009) Safety and immunogenicity of the Merck adenovirus serotype 5 (MRKAd5) and MRKAd6 human immunodeficiency virus type 1 trigene vaccines alone and in combination in healthy adults. Clin Vaccine Immunol 16, 1285-1292 https://doi.org/10.1128/CVI.00144-09
  48. Mennechet FJ, Tran TT, Eichholz K, van de Perre P and Kremer EJ (2015) Ebola virus vaccine: benefit and risks of adenovirus-based vectors. Expert Rev Vaccines 14, 1471-1478 https://doi.org/10.1586/14760584.2015.1083429
  49. Green CA, Scarselli E, Sande CJ et al (2015) Chimpanzee adenovirus- and MVA-vectored respiratory syncytial virus vaccine is safe and immunogenic in adults. Sci Transl Med 7, 300ra126 https://doi.org/10.1126/scitranslmed.aac5745
  50. Scallan CD, Tingley DW, Lindbloom JD, Toomey JS and Tucker SN (2013) An adenovirus-based vaccine with a double-stranded RNA adjuvant protects mice and ferrets against H5N1 avian influenza in oral delivery models. Clin Vaccine Immunol 20, 85-94 https://doi.org/10.1128/CVI.00552-12
  51. Alemany R (2014) Oncolytic adenoviruses in cancer treatment. Biomedicines 2, 36-49 https://doi.org/10.3390/biomedicines2010036
  52. Huang H, Liu Y, Liao W et al (2019) Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nat Commun 10, 4801 https://doi.org/10.1038/s41467-019-12794-2
  53. Yamamoto M and Curiel DT (2010) Current issues and future directions of oncolytic adenoviruses. Mol Ther 18, 243-250 https://doi.org/10.1038/mt.2009.266
  54. Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M and Ng P (2004) Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther 15, 35-46 https://doi.org/10.1089/10430340460732445
  55. Schnell MA, Zhang Y, Tazelaar J et al (2001) Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 3, 708-722 https://doi.org/10.1006/mthe.2001.0330
  56. Basner-Tschakarjan E, Gaffal E, O'Keeffe M et al (2006) Adenovirus efficiently transduces plasmacytoid dendritic cells resulting in TLR9-dependent maturation and IFN-alpha production. J Gene Med 8, 1300-1306 https://doi.org/10.1002/jgm.964
  57. Hartman ZC, Kiang A, Everett RS et al (2007) Adenovirus infection triggers a rapid, MyD88-regulated transcriptome response critical to acute-phase and adaptive immune responses in vivo. J Virol 81, 1796-1812 https://doi.org/10.1128/JVI.01936-06
  58. Worgall S, Wolff G, Falck-Pedersen E and Crystal RG (1997) Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 8, 37-44 https://doi.org/10.1089/hum.1997.8.1-37
  59. Xiang ZQ, Yang Y, Wilson JM and Ertl HC (1996) A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology 219, 220-227 https://doi.org/10.1006/viro.1996.0239
  60. Kafri T, Morgan D, Krahl T, Sarvetnick N, Sherman L and Verma I (1998) Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc Natl Acad Sci U S A 95, 11377-11382 https://doi.org/10.1073/pnas.95.19.11377
  61. Molinier-Frenkel V, Gahery-Segard H, Mehtali M et al (2000) Immune response to recombinant adenovirus in humans: capsid components from viral input are targets for vector-specific cytotoxic T lymphocytes. J Virol 74, 7678-7682 https://doi.org/10.1128/JVI.74.16.7678-7682.2000
  62. Zhong L, Granelli-Piperno A, Choi Y and Steinman RM (1999) Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. European Journal of Immunology 29, 964-972 https://doi.org/10.1002/(SICI)1521-4141(199903)29:03<964::AID-IMMU964>3.0.CO;2-P
  63. Fausther-Bovendo H and Kobinger GP (2014) Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important? Hum Vaccin Immunother 10, 2875-2884 https://doi.org/10.4161/hv.29594
  64. Smith JG, Cassany A, Gerace L, Ralston R and Nemerow GR (2008) Neutralizing antibody blocks adenovirus infection by arresting microtubule-dependent cytoplasmic transport. J Virol 82, 6492-6500 https://doi.org/10.1128/JVI.00557-08
  65. Parker AL, Waddington SN, Buckley SM et al (2009) Effect of neutralizing sera on factor x-mediated adenovirus serotype 5 gene transfer. J Virol 83, 479-483 https://doi.org/10.1128/JVI.01878-08
  66. Pichla-Gollon SL, Lin SW, Hensley SE et al (2009) Effect of preexisting immunity on an adenovirus vaccine vector: in vitro neutralization assays fail to predict inhibition by antiviral antibody in vivo. J Virol 83, 5567-5573 https://doi.org/10.1128/JVI.00405-09
  67. Calcedo R, Somanathan S, Qin Q et al (2017) Class I-restricted T-cell responses to a polymorphic peptide in a gene therapy clinical trial for alpha-1-antitrypsin deficiency. Proc Natl Acad Sci U S A 114, 1655-1659 https://doi.org/10.1073/pnas.1617726114
  68. Muruve DA, Cotter MJ, Zaiss AK et al (2004) Helperdependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J Virol 78, 5966-5972 https://doi.org/10.1128/JVI.78.11.5966-5972.2004
  69. Alzuguren P, Hervas-Stubbs S, Gonzalez-Aseguinolaza G et al (2015) Transient depletion of specific immune cell populations to improve adenovirus-mediated transgene expression in the liver. Liver Int 35, 1274-1289 https://doi.org/10.1111/liv.12571
  70. Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N and Verma IM (1995) Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci U S A 92, 1401-1405 https://doi.org/10.1073/pnas.92.5.1401
  71. Kaplan JM and Smith AE (1997) Transient immunosuppression with deoxyspergualin improves longevity of transgene expression and ability to readminister adenoviral vector to the mouse lung. Hum Gene Ther 8, 1095-1104 https://doi.org/10.1089/hum.1997.8.9-1095
  72. Otake K, Ennist DL, Harrod K and Trapnell BC (1998) Nonspecific inflammation inhibits adenovirus-mediated pulmonary gene transfer and expression independent of specific acquired immune responses. Hum Gene Ther 9, 2207-2222 https://doi.org/10.1089/hum.1998.9.15-2207
  73. Engelhardt JF, Simon RH, Yang Y et al (1993) Adenovirusmediated transfer of the CFTR gene to lung of nonhuman primates: biological efficacy study. Hum Gene Ther 4, 759-769 https://doi.org/10.1089/hum.1993.4.6-759
  74. Chillon M, Lee JH, Fasbender A and Welsh MJ (1998) Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro. Gene Ther 5, 995-1002 https://doi.org/10.1038/sj/gt/3300665
  75. Croyle MA, Chirmule N, Zhang Y and Wilson JM (2001) "Stealth" adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J Virol 75, 4792-4801 https://doi.org/10.1128/JVI.75.10.4792-4801.2001
  76. Benhar I, London A and Schwartz M (2012) The privileged immunity of immune privileged organs: the case of the eye. Front Immunol 3, 296 https://doi.org/10.3389/fimmu.2012.00296
  77. Galea I, Bechmann I and Perry VH (2007) What is immune privilege (not)? Trends Immunol 28, 12-18 https://doi.org/10.1016/j.it.2006.11.004
  78. Alliegro M, Ferla R, Nusco E, De Leonibus C, Settembre C and Auricchio A (2016) Low-dose gene therapy reduces the frequency of enzyme replacement therapy in a mouse model of lysosomal storage disease. Mol Ther 24, 2054-2063 https://doi.org/10.1038/mt.2016.181
  79. Marshall E (1999) Gene therapy death prompts review of adenovirus vector. Science 286, 2244-2245 https://doi.org/10.1126/science.286.5448.2244
  80. Naso MF, Tomkowicz B, Perry WL 3rd and Strohl WR (2017) Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31, 317-334 https://doi.org/10.1007/s40259-017-0234-5
  81. Wang D, Tai PWL and Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18, 358-378 https://doi.org/10.1038/s41573-019-0012-9
  82. Armbruster N, Lattanzi A, Jeavons M et al (2016) Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy. Mol Ther Methods Clin Dev 3, 16060 https://doi.org/10.1038/mtm.2016.60
  83. George LA, Sullivan SK, Giermasz A et al (2017) Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med 377, 2215-2227 https://doi.org/10.1056/NEJMoa1708538
  84. Pierce EA and Bennett J (2015) The status of RPE65 gene therapy trials: safety and efficacy. Cold Spring Harb Perspect Med 5, a017285 https://doi.org/10.1101/cshperspect.a017285
  85. Duan D (2018) Systemic AAV micro-dystrophin gene therapy for duchenne muscular dystrophy. Mol Ther 26, 2337-2356 https://doi.org/10.1016/j.ymthe.2018.07.011
  86. Kharraz Y, Guerra J, Pessina P, Serrano AL and MunozCanoves P (2014) Understanding the process of fibrosis in Duchenne muscular dystrophy. Biomed Res Int 2014, 965631 https://doi.org/10.1155/2014/965631
  87. Dudley RW, Lu Y, Gilbert R et al (2004) Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector. Hum Gene Ther 15, 145-156 https://doi.org/10.1089/104303404772679959
  88. Gilbert R, Nalbantoglu J, Howell JM et al (2001) Dystrophin expression in muscle following gene transfer with a fully deleted ("gutted") adenovirus is markedly improved by trans-acting adenoviral gene products. Hum Gene Ther 12, 1741-1755 https://doi.org/10.1089/104303401750476249
  89. Bates GP, Dorsey R, Gusella JF et al (2015) Huntington disease. Nat Rev Dis Primers 1, 15005 https://doi.org/10.1038/nrdp.2015.5
  90. den Hollander AI, Koenekoop RK, Yzer S et al (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79, 556-561 https://doi.org/10.1086/507318
  91. Lee W, Xie Y, Zernant J et al (2016) Complex inheritance of ABCA4 disease: four mutations in a family with multiple macular phenotypes. Hum Genet 135, 9-19 https://doi.org/10.1007/s00439-015-1605-y
  92. Tsybovsky Y, Molday RS and Palczewski K (2010) The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease. Adv Exp Med Biol 703, 105-125 https://doi.org/10.1007/978-1-4419-5635-4_8
  93. Guse K, Sule G, He F et al (2012) 160. Gene therapy for stargardt disease using helper-dependent adenoviral vectors. Mol Ther 20, S64
  94. McGuigan DB, Heon E, Cideciyan AV et al (2017) EYS mutations causing autosomal recessive retinitis pigmentosa: changes of retinal structure and function with disease progression. Genes (Basel) 8, 178 https://doi.org/10.3390/genes8070178
  95. Pierrache LH, Hartel BP, van Wijk E et al (2016) Visual prognosis in USH2A-associated retinitis pigmentosa is worse for patients with usher syndrome type iia than for those with nonsyndromic retinitis pigmentosa. Ophthalmology 123, 1151-1160 https://doi.org/10.1016/j.ophtha.2016.01.021
  96. Sun M, Kong L, Wang X et al (2004) Coexpression of tyrosine hydroxylase, GTP cyclohydrolase I, aromatic amino acid decarboxylase, and vesicular monoamine transporter 2 from a helper virus-free herpes simplex virus type 1 vector supports high-level, long-term biochemical and behavioral correction of a rat model of Parkinson's disease. Hum Gene Ther 15, 1177-1196 https://doi.org/10.1089/hum.2004.15.1177
  97. Axelsen TM and Woldbye DPD (2018) Gene therapy for Parkinson's disease, an update. J Parkinsons Dis 8, 195-215 https://doi.org/10.3233/JPD-181331
  98. Nilsson P, Iwata N, Muramatsu S, Tjernberg LO, Winblad B and Saido TC (2010) Gene therapy in Alzheimer's disease - potential for disease modification. J Cell Mol Med 14, 741-757 https://doi.org/10.1111/j.1582-4934.2010.01038.x
  99. Hammerich L, Marron TU, Upadhyay R et al (2019) Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med 25, 814-824 https://doi.org/10.1038/s41591-019-0410-x