DOI QR코드

DOI QR Code

Regulation of alternative macrophage activation by MSCs derived hypoxic conditioned medium, via the TGF-β1/Smad3 pathway

  • Kim, Ran (Department of Biology Education, College of Education, Pusan National University) ;
  • Song, Byeong-Wook (Department of Medical Science, College of Medicine, Catholic Kwandong University) ;
  • Kim, Minji (Department of Biology Education, College of Education, Pusan National University) ;
  • Kim, Won Jung (Department of Biology Education, College of Education, Pusan National University) ;
  • Lee, Hee Won (Department of Biology Education, College of Education, Pusan National University) ;
  • Lee, Min Young (Department of Molecular Physiology, College of Pharmacy, Kyungpook National University) ;
  • Kim, Jongmin (Department of Life Systems, Sookmyung Women's University) ;
  • Chang, Woochul (Department of Biology Education, College of Education, Pusan National University)
  • Received : 2020.08.26
  • Accepted : 2020.10.05
  • Published : 2020.11.30

Abstract

Macrophages are re-educated and polarized in response to myocardial infarction (MI). The M2 anti-inflammatory phenotype is a known dominator of late stage MI. Mesenchymal stem cells (MSCs) represent a promising tool for cell therapy, particularly heart related diseases. In general, MSCs induce alteration of the macrophage subtype from M1 to M2, both in vitro and in vivo. We conjectured that hypoxic conditions can promote secretome productivity of MSCs. Hypoxia induces TGF-β1 expression, and TGF-β1 mediates M2 macrophage polarization for anti-inflammation and angiogenesis in infarcted areas. We hypothesized that macrophages undergo advanced M2 polarization after exposure to MSCs in hypoxia. Treatment of MSCs derived hypoxic conditioned medium (hypo-CM) promoted M2 phenotype and neovascularization through the TGF-β1/Smad3 pathway. In addition, hypo-CM derived from MSCs improved restoration of ischemic heart, such as attenuating cell apoptosis and fibrosis, and ameliorating microvessel density. Based on our results, we propose a new therapeutic method for effective MI treatment using regulation of macrophage polarization.

Keywords

References

  1. Weinberger T and Schulz C (2015) Myocardial infarction: a critical role of macrophages in cardiac remodeling. Front Physiol 6, 107 https://doi.org/10.3389/fphys.2015.00107
  2. Duncan SE, Gao S, Sarhene M et al (2020) Macrophage Activities in Myocardial Infarction and Heart Failure. Cardiol Res Pract 2020, 4375127
  3. Lambert JM, Lopez EF and Lindsey ML (2008) Macrophage roles following myocardial infarction. Int J Cardiol 130, 147-158 https://doi.org/10.1016/j.ijcard.2008.04.059
  4. Gombozhapova A, Rogovskaya Y, Shurupov V et al (2017) Macrophage activation and polarization in post-infarction cardiac remodeling. J Biomed Sci 24, 13 https://doi.org/10.1186/s12929-017-0322-3
  5. Wang Y, Smith W, Hao D, He B and Kong L (2019) M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int Immunopharmacol 70, 459-466 https://doi.org/10.1016/j.intimp.2019.02.050
  6. Dick SA, Macklin JA, Nejat S et al (2019) Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat Immunol 20, 29-39 https://doi.org/10.1038/s41590-018-0272-2
  7. Orecchioni M, Ghosheh Y, Pramod AB and Ley K (2019) Macrophage polarization: different gene signatures in M1 (LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol 10, 1084 https://doi.org/10.3389/fimmu.2019.01084
  8. Parisi L, Gini E, Baci D et al (2018) Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res 2018, 8917804 https://doi.org/10.1155/2018/8917804
  9. Gong M, Zhuo X and Ma A (2017) STAT6 Upregulation promotes M2 macrophage polarization to suppress atherosclerosis. Med Sci Monit Basic Res 23, 240-249 https://doi.org/10.12659/MSMBR.904014
  10. Horckmans M, Ring L, Duchene J et al (2017) Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J 38, 187-197
  11. Thapa B and Lee K (2019) Metabolic influence on macrophage polarization and pathogenesis. BMB Rep 52, 360-372 https://doi.org/10.5483/bmbrep.2019.52.6.140
  12. Mouton AJ, DeLeon-Pennell KY, Rivera Gonzalez OJ et al (2018) Mapping macrophage polarization over the myocardial infarction time continuum. Basic Res Cardiol 113, 26 https://doi.org/10.1007/s00395-018-0686-x
  13. Nahrendorf M and Swirski FK (2013) Monocyte and macrophage heterogeneity in the heart. Circ Res 112, 1624-1633 https://doi.org/10.1161/CIRCRESAHA.113.300890
  14. Jin L, Deng Z, Zhang J et al (2019) Mesenchymal stem cells promote type 2 macrophage polarization to ameliorate the myocardial injury caused by diabetic cardiomyopathy. J Transl Med 17, 251 https://doi.org/10.1186/s12967-019-1999-8
  15. Dayan V, Yannarelli G, Billia F et al (2011) Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol 106, 1299-1310 https://doi.org/10.1007/s00395-011-0221-9
  16. Zhou YZ, Cheng Z, Wu Y et al (2019) Mesenchymal stem cell-derived conditioned medium attenuate angiotensin II-induced aortic aneurysm growth by modulating macrophage polarization. J Cell Mol Med 23, 8233-8245 https://doi.org/10.1111/jcmm.14694
  17. Kim SH, Oh KW, Jin HK and Bae JS (2018) Immune inflammatory modulation as a potential therapeutic strategy of stem cell therapy for ALS and neurodegenerative diseases. BMB Rep 51, 545-546 https://doi.org/10.5483/bmbrep.2018.51.11.255
  18. Noronha NC, Mizukami A, Caliari-Oliveira C et al (2019) Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther 10, 131 https://doi.org/10.1186/s13287-019-1224-y
  19. Ejtehadifar M, Shamsasenjan K, Movassaghpour A et al (2015) The effect of hypoxia on mesenchymal stem cell biology. Adv Pharm Bull 5, 141-149 https://doi.org/10.15171/apb.2015.021
  20. Yabluchanskiy A, Ma Y, DeLeon-Pennell KY et al (2016) Myocardial infarction superimposed on aging: MMP-9 deletion promotes M2 macrophage polarization. J Gerontol A Biol Sci Med Sci 71, 475-483 https://doi.org/10.1093/gerona/glv034
  21. Kwon SY, Chun SY, Ha YS et al (2017) Hypoxia enhances cell properties of human mesenchymal stem cells. Tissue Eng Regen Med 14, 595-604 https://doi.org/10.1007/s13770-017-0068-8
  22. Kinnaird T, Stabile E, Burnett MS et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94, 678-685 https://doi.org/10.1161/01.RES.0000118601.37875.AC
  23. Almeria C, Weiss R, Roy M et al (2019) Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro. Front Bioeng Biotechnol 7, 292 https://doi.org/10.3389/fbioe.2019.00292
  24. Zhang F, Wang H, Wang X et al (2016) TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7, 52294-52306 https://doi.org/10.18632/oncotarget.10561
  25. Gong D, Shi W, Yi SJ, Chen H et al (2012) TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol 13, 31 https://doi.org/10.1186/1471-2172-13-31
  26. Wilson HM (2014) SOCS proteins in macrophage polarization and function. Front Immunol 5, 357 https://doi.org/10.3389/fimmu.2014.00357
  27. Peet C, Ivetic A, Bromage DI and Shah AM (2020) Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res 116, 1101-1112 https://doi.org/10.1093/cvr/cvz336
  28. Ma Y, Mouton AJ and Lindsey ML (2018) Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl Res 191, 15-28 https://doi.org/10.1016/j.trsl.2017.10.001
  29. Wu J, Niu J, Li X et al (2014) TGF-β1 induces senescence of bone marrow mesenchymal stem cells via increase of mitochondrial ROS production. BMC Dev Biol 14, 21 https://doi.org/10.1186/1471-213X-14-21
  30. Swirski FK and Nahrendorf M (2013) Macrophage-stem cell crosstalk after myocardial infarction. J Am Coll Cardiol 62, 1902-1904 https://doi.org/10.1016/j.jacc.2013.07.058
  31. Ben-Mordechai T, Holbova R, Landa-Rouben N et al (2013) Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. J Am Coll Cardiol 62, 1890-1901 https://doi.org/10.1016/j.jacc.2013.07.057
  32. Jiang Y, Dai A, Li Q and Hu R (2006) Hypoxia induces transforming growth factor-beta1 gene expression in the pulmonary artery of rats via hypoxia-inducible factor-1alpha. Acta Biochim Biophys Sin (Shanghai) 39, 73-80
  33. Chen B, Huang S, Su Y et al (2019) Macrophage Smad3 protects the infarcted heart, stimulating phagocytosis and regulating inflammation. Circ Res 125, 55-70 https://doi.org/10.1161/CIRCRESAHA.119.315069
  34. Hung SP, Yang MH, Tseng KF and Lee OK (2013) Hypoxiainduced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplant 22, 1869-1882 https://doi.org/10.3727/096368912X657954