New record of four ciliates (Protozoa, Ciliophora) collected from rocky intertidal pools of South Korea

Jung Min Choi¹, Jae-Ho Jung², Jung-Hoon Kang³ and Young-Ok Kim¹,*

¹Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology (KIOST), Busan, Republic of Korea
²Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
³Risk Assessment Research Center, Korea Institute of Ocean Science & Technology (KIOST), Geoje, Republic of Korea

*Correspondent: yokim@kiost.ac.kr

Marine benthic ciliates were collected from four rocky intertidal pools along the eastern and southern coasts of Korea from 2012–2013. Ciliate specimens were examined by observing living and stained cells. Four ciliate species were new to Korea based on morphological characteristics as follows. (1) Aspidisca polypoda (Dujardin, 1841): small bean-shaped (ca. 30 μm), eight conspicuous dorsal ridge, polystyla-arrangement of frontoventral cirri; (2) Epiclinites auricularis auricularis (Claparède & Lachmann, 1858): tripartite and auriform body (ca. 300 μm), 46 adoral membranelles, one or two frontal and 23 transverse cirri, 12 oblique fronto-midventral rows; 59 left and 71 right marginal cirri; (3) Pseudochilodonopsis marina Song, 1991: reniform body (ca. 50 μm), two obliquely positioned contractile vacuoles, seven left and five right kineties, five fragmented preoral kineties; (4) Dysteria semilunaris (Gourret and Roeser, 1888): oval-shaped (ca. 30 μm), two longitudinally positioned contractile vacuoles, conspicuous longitudinal grooves on both plates, four or five right kineties, one short row below frontoventral kineties.

Keywords: benthic ciliate, marine, protargol impregnation, redescription, taxonomy

© 2020 National Institute of Biological Resources
DOI:10.12651/JSR.2020.9.4.455

INTRODUCTION

A total of 458 species of ciliates have been discovered in Korea (Kwon et al., 2019). A major habitat of the recorded ciliates is coastal waters, representing over 40% of the total number of species. Over 60% of the coastal species numbers were planktonic species, while less benthic ciliates have been recorded in Korean coastal waters.

Here, we report four benthic ciliates collected from intertidal pools as follows: Aspidisca polypoda (Dujardin, 1841); Epiclinites auricularis auricularis (Claparède & Lachmann, 1858); Pseudochilodonopsis marina Song, 1991; Dysteria semilunaris (Gourret and Roeser, 1888). Six, two, and six species in genus Aspidisca, Pseudochilodonopsis, and Dysteria were described respectively by taxonomical studies in Korea (Shin, 1988; Shin and Kim, 1988; Li et al., 2010; Park and Min, 2015; 2016; Park et al., 2017; Kim and Jung, 2017; 2018; Kim et al., 2018; Kim and Min, 2018). The genus Epiclinites in this study is newly recorded for Korean ciliate fauna.

MATERIALS AND METHODS

Ciliates were sampled from intertidal pools on basal rock in April of 2012 and in June of 2013. Sampling sites were located on eastern and southern coasts of Korea (Fig. 1). Water temperature, salinity, and pH were measured using a portable YSI (YSI professional plus water quality instrument, USA). Detailed information of sampling locations are described in 'Material examined' of each species. Biofilms covered on surface rock and waters in the pools were collected using brush, pipette, and sponge. The collected samples were transferred to the laboratory, then incubated adding rice grains to proliferate bacteria as food resource. The cultures were maintained in Petri dishes (90 mm in diameter) and incubated at room temperature.

The morphology of cultured specimens was observed under a stereomicroscope (Zeiss Stemi DV4, Germany) and an optical microscope (Zeiss Imager. A2; Germany) at magnifications ranging from 100× to 1000×. The protargol impregnation was performed using 'proce-
dure B’ method (Foissner, 2014). All measurements and photomicrographs were obtained using a digital camera (Zeiss AxioCam ICc1 rev. 4, Germany). To create the focus-stacked images of some thick specimens, Helicon Focus software 6.8.18 (HeliconSoft Ltd, Ukraine) was used. Terminology and systematic classification were mainly according to Berger (2006), Gong et al. (2007), and Lynn (2008).

RESULTS AND DISCUSSION

Phylum Ciliophora Doflein, 1901
Subphylum Intramacronucleata Lynn, 1996
Class Spirotrichea Bütschli, 1889
Order Euplotida Small & Lynn, 1985
Family Aspidiscidae Ehrenberg, 1830
Genus Aspidisca Ehrenberg, 1830

1. Aspidisca polypoda (Dujardin, 1841) Kahl, 1932 (Fig. 2)

Material examined. Marine water (temperature 11.5°C; salinity 34.0; pH 8.6) collected from Jeongdongjin Harbor, Jeongdongjin-ri, Gangdong-myeon, Gangneung-si, Gangwon-do, South Korea (37°41′09″N 129°02′32″E) on April 23, 2012 (Fig. 1; St. 1).

Diagnosis. Body size 22–40×21–35 μm, length:width ratio about 1.3:1 in vivo; 30–40×22–32 after protargol impregnation; outline bean-shaped with snout-like...
anterior portion; 8 prominent dorsal ridges; 1 inverted U-shaped macronucleus; contractile vacuole below transverse cirri; adoral zone of membranelles split into anterior and posterior part and each with 4–5 and 9–11 membranelles respectively; 7 frontoventral cirri; 6 transverse cirri including almost conjoined leftmost 2 cirri; 4 dorsal kineties each with about 8, 9, 9, 9 basal bodies, from left to right, respectively.

Distribution. Antarctica, France, Germany, Russia, and Korea.

Remarks. *Aspidisca polypoda* is easily distinguished by seven or eight conspicuous dorsal ribs (Dujardin, 1841), which coincides with this Korean population. Our population differs from the Antarctic population by basal body number of dorsal kineties 1–4 (ca. 8, 9, 9, 9 vs. ca. 4, 5, 6, 6, respectively) that might be caused by a distinct sampling localities/habitats (Song and Wilbert, 2002).

Among the other congeners with similar morphology to *A. polypoda*, *A. steini* Buddenbrock, 1920 is distinguishable from *A. polypoda* based on the number of dorsal ridges (absent or four vs. eight). *Aspidisca cicada* (Müller, 1786) Claparède & Lachmann, 1858 differs by pattern of frontoventral cirri (lynceus- arrangement vs. polystyla-arrangement) (Wu and Curds, 1979; Song and Wilbert, 1997).

Voucher slides. Two slides with protargol-impregnated specimens was deposited at National Institute of Biological Resources (NIBRPR0000110829) and Korea Institute of Ocean Science and Technology (KIOST), respectively.

Order Urostylida Jankowski, 1979
Family Epiclintidae Wicklow & Borror, 1990
Genus Epiclintes Stein, 1863

2. *Epiclintes auricularis auricularis* (Claparède & Lachmann, 1858) Stein, 1864 (Fig. 3)

Material examined. Marine water (temperature 16.4°C; salinity 34.6; pH 8.2) collected from Baekdo Island, Geomun-ri, Samsan-myeon, Yeosu-si, Jeollanam-do, South Korea (34°03′42″N 127°35′00″E) on June 4, 2013 (Fig. 1; St. 4).

Diagnosis. Body size about 250–350 × 30–40 μm in vivo; elongated and tripartite body composed of asymmetric auriform head, slightly wide trunk, and slender tail; dorsal bristle located on papillae; nuclear apparatus composed of
90–120 macronuclear nodules (3–8×2–5 μm) and several micronuclei (2.5–3.0 μm in diameter); 43–49 adoral membranelles; 1–2 frontal and 22–24 transverse cirri; 11–13 oblique fronto-midventral rows; 1 left and 1 right marginal row each with 57–60 and 68–73 cirri, respectively; three dorsal kineties.

Distribution. Worldwide (China, Egypt, England, France, Germany, Italy, Japan, Mexico, Netherlands, Norway, Poland, Russia, Sweden, USA, and Korea).

Remarks. The Korean population of *E. auricularis auricularis* follows to the original description by Claparède and Lachmann (1858) in following features: auriform body shape, about 300 μm body length; many oblique fronto-midventral rows; short cirri in tail part; short rod-shaped on cortex. Our population slightly differs from the Chinese population in the following features: body width (30–40 μm vs. 45–60 μm); number of frontal cirri (one or two vs. consistently one); number of left marginal cirri (57–60 vs. 49–56) (Song and Warren, 1996; Berger, 2006).

Epiclintes auricularis varisetus Hu et al., 2009 can be distinguished from the Korean population of *E. auricularis auricularis* as follows: (1) number of adoral membranelles (23–33 vs. 43–49); (2) number of left and right marginal cirri (22–31 vs. 57–60 for left and 35–54 vs. 68–73 for right); (3) number of fronto-midventral rows (8–9 vs. 12–15) (Hu et al., 2009).

Voucher slides. Two slides with protargol-impregnated specimens was deposited at National Institute of Biological Resources (NIBRPR0000110830) and Korea Institute of Ocean Science and Technology (KIOST), respectively.

Class Phyllopharyngea de Puytorac et al., 1974
Order Chlamydodontida Deroux, 1976
Family Chilodonellidae Deroux, 1970
Genus Pseudochilodonopsis Foissner, 1979

3. *Pseudochilodonopsis marina* Song, 1991 (Fig. 4)

Material examined. Marine water (temperature 14.5°C; salinity 32.5; pH 8.5) collected from Oryukdo, Yong-ho-dong, Nam-gu, Busan, South Korea (35°05′58″N 129°07′25″E) on April 22, 2012 (Fig. 1; St. 2).

Diagnosis. Body size 40–60×28–35 μm, length : width
ratio about 1.4 : 1 in vivo; 41–65 × 21–38 μm after protargol impregnation; outline reniform; dorsoventrally flatted about 2 : 1; single macronucleus 13–18 × 9–17 μm in size; 2 contractile vacuoles obliquely located; 10–15 nematodesmal rods; 7 left and 5 right kineties on ventral side; 5 fragmented preoral kineties; terminal fragment positioned apically on dorsal side, consisting of 5–7 basal bodies.

Distribution. China and Korea.

Remarks. The Korean population of *P. marina* highly resembles the original description by Song (1991) but, slightly differs in the size of macronucleus (ca. 15.5 × 11.9 vs. ca. 19.5 × 13.3) (Song, 1991; Liu *et al.* 2008).

The closest congener *P. similis* Song & Wilbert, 1989 differs from the Korean population as follows: location of terminal fragment (apical vs. subapical); basal body number of the terminal fragment (5–7 vs. 8–10); number of nematodesmal rods (10–15 vs. 16–18) (Song and Wilbert, 1989).

Voucher slides. Two slides with protargol-impregnated specimens was deposited at National Institute of Biological Resources (NIBRPR0000110831) and Korea Institute of Ocean Science and Technology (KIOST), respectively.

Order Dysteriida Deroux, 1976

Family Dysteriidae Claparède & Lachmann, 1858

Genus Dysteria Huxley, 1857

4. *Dysteria semilunaris* (Gourret & Roeser, 1888) Kahl, 1931 (Fig. 5)

Material examined. Marine water (temperature 12.0°C; salinity 33.0; pH 8.5) collected from the beach of Yullim village, Yullim-ri, Dolsan-eup, Yeosu-si, Jeollanam-do, South Korea (34°36′19″N 127°47′22″E) on April 21, 2012 (Fig. 1; St. 3).

Diagnosis. Body size 26–36 × 16–20 μm, length : width ratio about 1.7 : 1, bilaterally flattened about 1 : 2.1 in

Fig. 5. Photomicrographs of *Dysteria semilunaris* from living specimens (A–D) and protargol impregnated specimens (E, F). A. Left lateral view of typical individual. B. Longitudinal groove on left plate (arrowheads). C. Ventral view. D. Right lateral view showing the two contractile vacuoles (arrows) and the longitudinal groove on the right plate (arrowheads). E, F. Left views of stained specimens showing infraciliature, arrow denotes the short row below the end of the frontoventral kineties. Co, circumoral kineties; CVP, contractile vacuole pore; Cy, cytopharynx; EF, equatorial fragment; FVK, frontoventral kineties; LF, left frontal kineties; LK, left kineties; Ma, macronucleus; P, podite; Pr, preoral kinety; RK, right kineties; TF, terminal fragment. Scale bars: 20 μm.
vivo; outline oval-shaped, broad anterior and narrowed posterior end of the cell, dorsal side convex than ventral side; conspicuous longitudinal grooves presented left and right plate; single macronucleus 14–20 × 6–10 μm in size; 2 longitudinally positioned contractile vacuoles near innermost row of right kinetics; about 9 μm podite caudally positioned on left ventral side; 4–5 right kinetics, including 2 frontoventral kinetics of which extend dorso-apically; 1 short row below the anterior end of the frontoventral kinetics; 6–7 left kinetics; equatorial fragment composed of 5–9 basal bodies; terminal fragment anteriorly positioned, composed of 3–5 basal bodies; 2 parallel circumoral kinetics; 3 left frontal kinetics; single-rowed preoral kinetic

Distribution. China, France, Germany, and Korea.

Remarks. The descriptions by Gourret and Roesser (1888) and Kahl (1931) did not provide detailed information of body size and infraciliature. Nevertheless, the *D. semilunaris* can be easily identified by the body shape and marine habitat. The Korean population of *D. semilunaris* differs from the two Chinese populations (Qingdao and Shanghai) in number of right kinetics (4–5 vs. consistently 4 in both populations), presence of longitudinal groove (left and right plates vs. left only vs. right only), and transverse stripe at the equatorial region (absent in the Korean and Qingdao population vs. present in Shanghai population) (Gong et al., 2007; Pan et al., 2016).

The closest congeners *D. ovalis* (Gourret and Roesser, 1886) Kahl, 1931 and *D. crassipes* Claparède & Lachmann, 1859 can be distinguished from *D. semilunaris* as follows: (1) absence of an extra short row below the anterior end of the frontoventral kinetics; (2) absence of a longitudinal groove on the both plate; (3) subcaudally-located podite (Gong et al., 2007; Park and Min, 2015; Pan et al., 2016). Additionally, *D. calcinsi* Kahl, 1931 differs from *D. semilunaris* in the following features: arrangement of contractile vacuoles (diagonally positioned in original description but not detected in Antarctic population vs. longitudinally positioned); number of groove on the left plate (two vs. one); extra short row below the end of frontoventral kinetics (absent vs. present); number of left frontal kinetics (two vs. three) (Kahl, 1931; Song and Wilbert, 2002; Gong et al., 2007).

Voucher slides. Two slides with protargol-impregnated specimens was deposited at National Institute of Biological Resources (NIBRPR0000110832) and Korea Institute of Ocean Science and Technology (KIOST), respectively.

Acknowledgements

This study was supported by grants from Korean Institute of Ocean Science and Technology (KIOST) projects “A base study to understand and counteract marine ecosystem change in Korean waters” (PE99813): “Development of risk assessment and management process of ship’s biofouling debris discharged from in-water cleaning” and National Institute of Biological Resources (NIBR) funded by the Ministry of Environment (ME) of the Republic of Korea (NIBR202002204).

References

magna Kahl, 1932 and A. leptaspis Fresenius, 1865 (Cilio-
phora, Euplotida), with notes on ontogenesis in A. magna.
Liu, W., J. Gong, X. Lin, Z. Shen, J. Li, M. Zhu, M. Wang
and W.B. Song. 2008. Redescriptions of two cyrtophorid
ciliates, Dysteria procera Kahl, 1931 and Pseudochilo-
Lynn, D.H. 2008. The ciliated protozoa: characterization, clas-
sification, and guide to the literature. Springer, New York.
of four cyrtophorian ciliates (Protozoa, Ciliophora) from
Yangtze Delta, China, with notes on the phylogeny of the
Park, M.-H. and G.-S. Min. 2015. New records of three Dys-
teriids (Ciliophora: Pylopharyngea) from Korea. Korean J
Park, M.-H. and G.-S. Min. 2016. Morphological reports of
four ciliates (Ciliophora) from coastal marine and brackish
Park, M.-H., Y.-D. Han, C.B. Kwon, E.S. Lee, J.H. Kim,
Y.S. Kang, S.-J. Kim, H.-M. Yang, T. Park, J.-S. Yoo, H.-
corded species of Korean ciliates (Protozoa, Ciliophora)
discovered through the project of “Discovery of Korean
Indigenous species” (2006-2010). J Species Res 6 (Special
Shin, M.K. 1988. Several hypotrichous ciliates inhabiting the
Han River in Seoul. In: Department of Zoology. Seoul
National University, Seoul (master thesis).
inhabiting the Han River in Seoul. Korean J Syst Zool
(Special Issue No. 2):67-85.
Song, W. 1991. Morphology and Infraciliature of Pseu-
donichilodonopsis marina nov. spec. (Protozoa: Ciliophora),
a Marine Ciliate from Qingdao (P. R. China). Zool Jb Syst
118:79-86.
ciliates Uroleptus retractilis (Claparède and Lachmann,
1858) comb. n. and Epiclintes ambiguus (Müller, 1786)
Bütschli, 1889 (Ciliophora, Hypotrichida). Acta Protozool
35:227-234.
Song, W. and N. Wilbert. 1989. Taxonomische Untersuchun-
gen an Aufwuchsciliaten (Protozoa, Ciliophora) im Popp-
elsdorfer Weiher, Bonn. Lauterbornia Heft 3:2-221 (in
German).
on some free living ciliates (Protozoa, Ciliophora) from
China Sea with description of a new hypotrichous genus,
Song, W. and N. Wilbert. 2002. Faunistic studies on marine
ciliates from the Antarctic benthic area, including descrip-
tions of one epizoic form, 6 new species and, 2 new gen-
Wu, I.C.H. and C.R. Curds. 1979. A guide to the species of