DOI QR코드

DOI QR Code

Theoretical Study on Structural Properties of Phenthylamine Derivatives

페네틸아민 유도체의 구조적 특성에 관한 이론적 연구

  • Lee, Chul Jae (Devision of Chemical Industrial Technology, Yeungnam University College)
  • 이철재 (영남이공대학교 화장품화공계열)
  • Received : 2020.09.28
  • Accepted : 2020.10.21
  • Published : 2020.11.30

Abstract

Phenylamine derivatives are substances that have a biochemical action and are widely applied as psychotropic drugs. In particular, with regard to the quantitative analysis of substances such as ephedrine, amphetamine, pentermine, and dopamine, many previous studies such as electrochemical, vacuum ultraviolet method, and gas chromatography have been conducted. However, there have not been many studies on the structural characteristics of molecular units. Therefore, In this study, we used (HyperChem8.0's, HC) semi-empirical PM3 method to calculate the total energy, band gap, electrostatic potential, and net charge of ephedrine, amphetamine, pentamine and dopamine to investigate the chemical properties of each derivative according to the molecular structure change. The results showed that for total energy -43,171.8, -32,9538.3, -36,407.3 and -43,061.2 Kcal/mol, respectively, while for band gaps, 10.16379377, 9.9531666, 9.7878002 and 9.0589282 eV. Also, for electrostatic potentials, 1.301~-0.045, 1.694~0.299, 0.694~-0.158 and 1.587~-0.048 respectively. Finally, looking at the distribution of net charges, the oxygen atoms, nitrogen atoms and carbon atoms were -0.312~-0.242, -0.161~-0.051 and +0.13~-0.12 respectively. These results are expected to lead to chemical action centered on phenyl radicals and oxygen and nitrogen atoms common to phenethylamine derivatives.

페네틸아민 유도체는 생화학적 작용을 하는 물질로 향정신성 약물로 많이 응용되고 있다. 특히 에페드린, 암페타민, 펜터마인 그리고 도파민과 같은 물질의 정량적 검출과 관련해서는 전기화학적, 진공자외선법, 그리고 가스크로마토그래피법 등의 선행연구가 많이 진행되었다. 그러나 분자 단위의 구조적 특성에 따른 연구는 많이 보고되지 않았다. 따라서 이 연구에서는 페네틸아민 유도체의 구조적 특성을 알아보기 위하여 (HyperChem8.0, HC)의 반경험적 PM3 방법을 이용하여 에페드린, 암페타민, 펜터마인 그리고 도파민의 전체에너지, 밴드갭, 정전포텐셜, 전하량을 계산하여 각 유도체의 분자구조적 변화에 따른 화학적 특성을 조사하였다. 그 결과 총에너지의 경우 -43,171.8, -32,9538.3, -36,407.3 그리고 -43,061.2 Kcal/mol로 각각 나타났으며 밴드 갭의 경우 10.1637937, 9.9531666, 9.7878002 그리고 9.0589282 eV로 나타났다. 또한, 정전포텐셜의 경우 1.301~-0.045, 1.694~0.299, 0.694~-0.158 그리고 1.587~-0.048로 각각 나타났다. 마지막으로 알짜전하 분포를 살펴보면 산소 원자, 질소 원자 그리고 탄소 원자의 경우 각각 -0.312~-0.242, -0.161~-0.051 그리고 +0.13~-0.12로 나타났다. 이와 같은 결과는 페네틸아민 유도체에 공통으로 존재하는 페닐기와 산소 및 질소 원자를 중심으로 화학작용이 진행될 것으로 예상한다.

Keywords

References

  1. Pipe, A., Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance. Clin. J. Sport Med. 14, 188-189, (2004). https://doi.org/10.1097/00042752-200405000-00013.
  2. European Monitoring Centre for Drugs and Drug Addiction, Drug precursor developments in the European Union, (2019). https://doi.org/10.2810/022894.
  3. Kurashima, N., Makino, Y., Sekita, S., Urano, Y., Nagano, T., Determination of origin of ephedrine used as precursor for illicit methamphetamine by carbon and nitrogen stable isotope ratio analysis. Anal. Chem. 76, 4233-4236, (2004). https://doi.org/10.1021/ac035417c.
  4. Lukasz P., Konrad R., Viliam K., Tana S., Pawel K., Slawomira S., Electrochemical study of ephedrine at the polarized liquid-liquid interface supported with a 3D printed cell, J. Hazardous Materials 402, 1-10, (2021). https://doi.org/10.1016/j.jhazmat.2020.123411
  5. Schug, K.A., Sawicki, I., Carlton Jr., D.D., Fan, H., McNair, H.M., Nimmo, J.P., Kroll, P., Smuts, J., Walsh, P., Harrison, D., Vacuum ultraviolet detector for gas chromatography, Anal. Chem. 86, (16), 83298335, (2014).
  6. Skultety, L., Frycak, P., Qiu, C., Smuts, J., Shear-Laude, L., Lemr, K., Mao, J.X., Kroll, P.,Schug, K.A., Szewczak, A., Vaught, C., Lurie, I., Havlicek, V., Resolution of isomeric new designer stimulants using gas chromatography ? vacuum ultraviolet spectroscopy and theoretical computations, Anal. Chim. Acta 971, 55?67, (2017).
  7. Lurie, I.S., Tremeau-Cayel, L., Rowe, W.F., Recent advances in comprehensive chromatographic analysis of emerging drugs, LCGC N. Am. 35, (12), 878?883, (2017).
  8. Awad, T., Belal, T., DeRuiter, J., Kramer, K., Clark, C.R. Comparison of GC-MS and GCIRD methods for the differentiation of methamphetamine and regioisomeric substances, Forensic Sci. Int. 185, (13), 6777, (2009).
  9. Baliki, M.N., Mansour, A., Baria, A.T., Huang, L., Berger, S.E., Fields, H.L., Apkarian, A.V., "Parceling human accumbens into putative core and shell dissociates encoding of values for reward and pain". The Journal of Neuroscience. 33, (41), 16383, (2013). https://doi.org/10.1523/JNEUROSCI.1731-13.2013
  10. Wenzel, J.M., Rauscher, N.A., Cheer, J.F., Oleson, E.B., "A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature". ACS Chemical Neuroscience. 6, (1), 16-26, (2015). https://doi.org/10.1021/cn500255p
  11. Stewart, J.P., J. Comput. Chem., 10, (2), 209, (1989). https://doi.org/10.1002/jcc.540100208
  12. HyperChem, Molecular visualization and simulation program package, Hypercube, Gainsville, F1. (1995-2011).
  13. Lee, C.J., "Study on Surface Enhanced Raman Scattering of Indigo Carmine" JCCT 4, (2), 149-154, (2018). http://dx.doi.org/10.17703/JCCT.2018.4.2.149
  14. Lee, C.J., Choi, J.W., Jang, W.G., "Theoretical Studies on the Electrical Characteristics of the Anthocyanin Derivatives" JCCT 4, (4), 343-348, (2018) . http://dx.doi.org/10.17703/JCCT.2018.4.4.343