DOI QR코드

DOI QR Code

Pulverization and Densification Behavior of YAG Powder Synthesized by PVA Polymer Solution Method

  • Im, Hyun-Ho (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Lee, Sang-Jin (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • Received : 2020.09.08
  • Accepted : 2020.09.24
  • Published : 2020.11.27

Abstract

YAG (Yttrium Aluminum Garnet, Y3Al5O12) has excellent plasma resistance and recently has been used as an alternative to Y2O3 as a chamber coating material in the semiconductor process. However, due to the presence of an impurity phase and difficulties in synthesis and densification, many studies on YAG are being conducted. In this study, YAG powder is synthesized by an organic-inorganic complex solution synthesis method using PVA polymer. The PVA solution is added to the sol in which the metal nitrate salts are dissolved, and the precursor is calcined into a porous and soft YAG powder. By controlling the molecular weight and the amount of PVA polymer, the effect on the particle size and particle shape of the synthesized YAG powder is evaluated. The sintering behavior of the YAG powder compact according to PVA type and grinding time is studied through an examination of its microstructure. Single phase YAG is synthesized at relatively low temperature of 1,000 ℃ and can be pulverized to sub-micron size by ball milling. In addition, sintered YAG with a relative density of about 98 % is obtained by sintering at 1,650 ℃.

Keywords

References

  1. H. S. Kwon, Y. J. Kim, H. K. Park and C. H. Lee, Surf. Coat. Technol., 374, 493 (2019). https://doi.org/10.1016/j.surfcoat.2019.05.052
  2. W. Liu, L. Jin and S. Wang, Mater. Chem. Phys., 232, 471 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.018
  3. H. I. Na, J. W. Park, S. C. Choi and H. J. Kim, Appl. Surf. Sci., 476, 663 (2019). https://doi.org/10.1016/j.apsusc.2019.01.133
  4. J. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara and K. Uematsu, J. Am. Ceram. Soc., 90, 2327 (2007). https://doi.org/10.1111/j.1551-2916.2007.01738.x
  5. D. M. Kim, S. Y. Yoon, K. B. Kim, H. S. Kim, Y. S. Oh and S. M. Lee, J. Korean Ceram. Soc., 45, 707 (2008). https://doi.org/10.4191/KCERS.2008.45.1.707
  6. K. B. Kim, D. M. Kim, J. K. Lee, Y. S. Oh, H. T. Kim, H. S. Kim and S. M. Lee, J. Korean Ceram. Soc., 46, 456 (2009). https://doi.org/10.4191/KCERS.2009.46.5.456
  7. J. Zhou, F. Zhao, X. Wang, Z. Li, Y. Zhang and I. Yang, J. Lumin., 119, 237 (2006). https://doi.org/10.1016/j.jlumin.2005.12.036
  8. H. G. Jung, G. H. Hwang, K. Y. Lim, Y. H. Lee and S. G. Kang, J. Korean Powder Metall. Inst., 13, 243 (2006). https://doi.org/10.4150/KPMI.2006.13.4.243
  9. L. Yang, T. Lu, H. Xu and N. Wei, J. Alloys Compd., 484, 449 (2009). https://doi.org/10.1016/j.jallcom.2009.04.123
  10. X. H. Yan, S. S. Zheng, R. M. Yu, J. Cai, Z. W. Xu, C. J. Liu and X. T. Luo, Trans. Nonferrous Met. Soc. China, 18, 648 (2008). https://doi.org/10.1016/S1003-6326(08)60113-2
  11. M. Mostafa, K. Ebnalwaled, H. A. Saied and R. Roshdy, J. Korean Ceram. Soc., 55, 581 (2018). https://doi.org/10.4191/kcers.2018.55.6.04
  12. T. M. Chen, S. C. Chen and C. J. Yu, J. Solid State Chem., 144, 437 (1999). https://doi.org/10.1006/jssc.1999.8202
  13. Y. C. Kang, I. W. Lenggoro, S. B. Park and K. Okuyama, Mater. Res. Bull., 35, 798 (2000).
  14. M. Suarez, A. Fernandez, J. L. Menendez and R. Torrecillas, J. Alloys Compd., 493, 391 (2010). https://doi.org/10.1016/j.jallcom.2009.12.108
  15. B. Vaidhyanathan and J. G. P. Binner, J. Mater. Sci., 41, 5954 (2006). https://doi.org/10.1007/s10853-006-0260-z
  16. T. Zhou, L. Zhang, Z. Li, S. Wei, J. Wu, L. Wang, H. Yang, Z. Fu, H. Chen, D. Tang, C. Wong and Q. Zhang, Ceram. Int., 43, 3140 (2017). https://doi.org/10.1016/j.ceramint.2016.11.131
  17. B. Liu, Y. You, H. Zhang, H. Wu, J. Jin and H. Liu, RSC Adv., 6, 110349 (2016). https://doi.org/10.1039/C6RA24154A
  18. A. R. Kim and S. J. Lee, J. Korean Ceram. Soc., 51, 424 (2014). https://doi.org/10.4191/kcers.2014.51.5.424
  19. E. R. Kupp, S. Kochawattama, S. H. Lee, S. Misture and G. L. Messing, J. Mater. Res., 29, 2303 (2014). https://doi.org/10.1557/jmr.2014.224
  20. H. G. Jung, G. H. Hwang, K. Y. Lim, Y. H. Lee and S. G. Kang, J. Korean Powder Metall. Inst., 13, 243 (2006). https://doi.org/10.4150/KPMI.2006.13.4.243
  21. Y. C. Kang, Y. S. Chung and S. B. Park, Korean J. Chem. Eng., 38, 62 (1999).
  22. A. Ikesue, T. Kinoshita, K. Kamta and K. Yoshida, J. Am. Ceram. Soc., 78, 1033 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08433.x
  23. H. Tong, N. Wang, Y. Zou, Z. Zhang, W. fan, J. Shou and X. Zhang, J. Electron. Mater., 48, 374 (2018). https://doi.org/10.1007/s11664-018-6723-6
  24. R. Manalert and M. N. R. Rahaman, J. Mater. Sci., 31, 3453 (1996). https://doi.org/10.1007/BF00360748
  25. Y. H. Kim and S. J. Lee, J. Korean Powder Metall. Inst., 20, 37 (2013). https://doi.org/10.4150/KPMI.2013.20.1.037
  26. S. J. Lee and J. E. Lee, J. Korean Powder Metall. Inst., 18, 35 (2011). https://doi.org/10.4150/KPMI.2011.18.1.035