DOI QR코드

DOI QR Code

Photoactive Layer Formation with Oven Annealing for a Carbon Electrode Perovskite Solar Cell

  • Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • Received : 2020.09.01
  • Accepted : 2020.10.12
  • Published : 2020.11.27

Abstract

The photovoltaic properties of perovskite solar cells (PSCs) with a carbon electrode fabricated using different annealing processes are investigated. Perovskite formation (50 ℃, 60 min) using a hot-plate and an oven is carried out on cells with a glass/fluorine doped TiO2/TiO2/ZrO2/carbon structure, and the photovoltaic properties of the PSCs are analyzed using a solar simulator. The microstructures of the PSCs are characterized using an optical microscope, a field emission scanning electron microscope, and an electron probe micro-analyzer (EPMA). Photovoltaic analysis shows that the energy conversion efficiency of the samples fabricated using the hot-plate and the oven processes are 2.08% and 6.90%, respectively. Based on the microstructure of the samples and the results of the EPMA, perovskite is formed locally on the carbon electrode surface as the γ-butyrolactone (GBL) solvent evaporates and moves to the top of the carbon electrode due to heat from the bottom of the sample during the hot plate process. When the oven process is used, perovskite forms evenly inside the carbon electrode, as the GBL solvent evaporates extremely slowly because heat is supplied from all directions. The importance of the even formation of perovskite inside the carbon electrode is emphasized, and the feasibility of oven annealing is confirmed for PSCs with carbon electrodes.

Keywords

References

  1. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). https://doi.org/10.1021/ja809598r
  2. S. Maniarasu, T. B. Korukonda, V. Manjunath, E. Ramasamy, M. Ramesh and G. Veerappan, Renew Sustain Energ. Rev., 82, 845 (2018). https://doi.org/10.1016/j.rser.2017.09.095
  3. H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du and T. Ma, J. Phys. Chem. Lett., 5, 3241 (2014). https://doi.org/10.1021/jz5017069
  4. L. Zhang, T. Liu, L. Liu, M. Hu, Y. Yang, A. Mei and H. Han, J. Mater. Chem. A, 3, 1965 (2015).
  5. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang and H. Han, Science, 345, 295 (2014). https://doi.org/10.1126/science.1254763
  6. F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao and L. Sun, ACS Appl. Mater. Interfaces, 6, 16140 (2014). https://doi.org/10.1021/am504175x
  7. H. Tao, Y. Li, C. Zhang, K. Wang, J. Wang, B. Tan, L. Han and J. Tao, Solid State Commun., 271, 71 (2018). https://doi.org/10.1016/j.ssc.2017.12.022
  8. N. Santhosh, S. R. Sitaaraman, P. Pounraj, R. Govindaraj, M. Senthil Pandian and P. Ramasamy, Mater. Lett., 236, 706 (2019). https://doi.org/10.1016/j.matlet.2018.11.052
  9. S. Hashmi, D. Martineau, M. Dar, T. Myllymaki, T. Sarikka, V. Ulla, S. Zakeeruddin and M. Gratzel, J. Mater. Chem. A, 5, 12060 (2017). https://doi.org/10.1039/C7TA04132B
  10. Y. Li, Z. Zhao, F. Lin, X. Cao, X. Cui and J. Wei, Small, 13, 1604125 (2017). https://doi.org/10.1002/smll.201604125
  11. J. Li, Y. Wang, F. Wang, S. Liang, X. Lin, X. Chen and J. Zhou, Phys. Lett. A, 381, 3732 (2017). https://doi.org/10.1016/j.physleta.2017.09.037