DOI QR코드

DOI QR Code

The Effect of Microwave Annealing Time on the Electrical Characteristics for InGaZnO Thin-Film Transistors

마이크로파 조사 시간에 따른 InGaZnO 박막 트랜지스터의 전기적 특성 평가

  • Jang, Seong Cheol (Department of Materials Science and Engineering, Chungnam National University) ;
  • Park, Ji-Min (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyoung-Do (Department of Materials Science and Engineering, Chungnam National University) ;
  • Lee, Hyun Seok (Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University) ;
  • Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
  • 장성철 (충남대학교 신소재공학과) ;
  • 박지민 (충남대학교 신소재공학과) ;
  • 김형도 (충남대학교 신소재공학과) ;
  • 이현석 (충북대학교 물리학과) ;
  • 김현석 (충남대학교 신소재공학과)
  • Received : 2020.10.05
  • Accepted : 2020.10.13
  • Published : 2020.11.27

Abstract

Oxide semiconductor, represented by a-IGZO, has been commercialized in the market as active layer of TFTs of display backplanes due to its various advantages over a-Si. a-IGZO can be deposited at room temperature by RF magnetron sputtering process; however, additional thermal annealing above 300℃ is required to obtain good semiconducting properties and stability. These temperature are too high for common flexible substrates like PET, PEN, and PI. In this work, effects of microwave annealing time on IGZO thin film and associated thin-film transistors are demonstrated. As the microwave annealing time increases, the electrical properties of a-IGZO TFT improve to a degree similar to that during thermal annealing. Optimal microwave annealed IGZO TFT exhibits mobility, SS, Vth, and VH of 6.45 ㎠/Vs, 0.17 V/dec, 1.53 V, and 0.47 V, respectively. PBS and NBS stability tests confirm that microwave annealing can effectively improve the interface between the dielectric and the active layer.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  2. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, Jpn. J. Appl. Phys., 45, 4303 (2006). https://doi.org/10.1143/JJAP.45.4303
  3. T. Kamiya, K. Nomura and H. Hosono, Jpn. J. Appl. Phys., 11, 044305 (2010).
  4. J. H. Lee, D. H. Kim, D. J. Yang, S. Y. Hong, K. S. Yoon, P. S. Hong, C. O. Jeong, H. S. Park, S. Y. Kim and S. K. Lim, SID 08 Dig., 39, 625 (2008). https://doi.org/10.1889/1.3069740
  5. T. Arai, J. Soc. Inf. Display, 20, 156 (2012). https://doi.org/10.1889/JSID20.3.156
  6. J. S. Park, W.-J. Maeng, H.-S. Kim and J.-S. Park, Thin Solid Films, 520, 1679 (2012). https://doi.org/10.1016/j.tsf.2011.07.018
  7. H.-W. Zan, W.-T. Chen, C.-W. Chou, C.-C. Tsai, C.-N. Huang and H.-W. Hsueh, Electrochem. Solid State Lett., 13, H144 (2010). https://doi.org/10.1149/1.3313201
  8. M. G. Stanford, J. H. Noh, K. Mahady, A. V. Ievlev, P. Maksymovych, O. S. Ovchinnikova and P. D. Rack, ACS Appl. Mater. Interfaces, 9, 35125 (2017). https://doi.org/10.1021/acsami.7b10449
  9. C. Liu, Y. Sun, H. Qin, Y. Liu, S. Wei and Y. Zhao, IEEE Electron Device Lett., 40, 415 (2019). https://doi.org/10.1109/LED.2019.2896111
  10. J. Sheng, H. J. Lee, S. Oh and J. S. Park, ACS Appl. Mater. Interfaces, 8, 33821 (2016). https://doi.org/10.1021/acsami.6b11774
  11. J. W. Park, B. H. Kang and H. J. Kim, Adv. Funct. Mater., 30, 1904632 (2020). https://doi.org/10.1002/adfm.201904632
  12. J. S. Hur, J. O. Kim, H. A. Kim and J. K. Jeong, ACS Appl. Mater. Interfaces, 11, 21675 (2019). https://doi.org/10.1021/acsami.9b02935
  13. H.-C. Cheng and C.-Y. Tsay, J. Alloys Compd., 507, L1 (2010). https://doi.org/10.1016/j.jallcom.2010.06.166
  14. S. C. Jang, J. Park, H.-D. Kim, H. Hong, K.-B. Chung, Y. J. Kim and H.-S. Kim, AIP Adv., 9, 025204 (2019). https://doi.org/10.1063/1.5082862
  15. I. K. Lee, K. H. Lee, S. Lee and W. J. Cho, ACS Appl. Mater. Interfaces, 6, 22680 (2014). https://doi.org/10.1021/am506805a
  16. A. Saenz-Trevizo, P. Amezaga-Madrid, P. Piza-Ruiz, W. Antunez-Flores and M. Miki-Yoshida, Mater. Res., 19, 33 (2016). https://doi.org/10.1590/1980-5373-mr-2015-0612
  17. J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi B, 15, 627 (1966) https://doi.org/10.1002/pssb.19660150224
  18. A. Suresh and J. Muth, Appl. Phys. Lett., 92, 033502 (2008). https://doi.org/10.1063/1.2824758
  19. J. Su, H. Yang, Y. Ma, R. Li, L. Jia, D. Liu and X. Zhang, Mater. Sci. Semicond. Process, 113, 105040 (2020). https://doi.org/10.1016/j.mssp.2020.105040
  20. J. K. Jeong, H. Won Yang, J. H. Jeong, Y.-G. Mo and H. D. Kim, Appl. Phys. Lett., 93, 123508 (2008). https://doi.org/10.1063/1.2990657