DOI QR코드

DOI QR Code

Additive Manufacturing of Various Ceramic Composition Using Inkjet Printing Process

잉크젯 프린팅을 이용한 연속 조성 세라믹 화합물 구조체 형성

  • Park, Jae-Hyeon (Icheon Branch, Korea Institute of Ceramic Engineering & Technology) ;
  • Choi, Jung-Hoon (Icheon Branch, Korea Institute of Ceramic Engineering & Technology) ;
  • Hwang, Kwang-Taek (Icheon Branch, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Jin-Ho (Icheon Branch, Korea Institute of Ceramic Engineering & Technology)
  • 박재현 (한국세라믹기술원(KICET) 이천분원) ;
  • 최정훈 (한국세라믹기술원(KICET) 이천분원) ;
  • 황광택 (한국세라믹기술원(KICET) 이천분원) ;
  • 김진호 (한국세라믹기술원(KICET) 이천분원)
  • Received : 2020.09.11
  • Accepted : 2020.10.14
  • Published : 2020.11.27

Abstract

3D printing technology is a processing technology in which 3D structures are formed by fabricating multiple 2D layers of materials based on 3D designed digital data and stacking them layer by layer. Although layers are stacked using inkjet printing to release various materials, it is still rare for research to successfully form a product as an additive manufacture of multi-materials. In this study, dispersion conditions are optimized by adding a dispersant to an acrylic monomer suitable for inkjet printing using Co3O4 and Al2O3. 3D structures having continuous composition composed of a different ceramic material are manufactured by printing using two UV curable ceramic inks whose optimization is advanced. After the heat treatment, the produced structure is checked for the formation and color of the desired crystals by comparing the crystalline analysis according to the characteristics of each part of the structure with ceramic pigments made by solid phase synthesis method.

Keywords

References

  1. S. Bose, D. Ke and H. Sahasrabudhe, Prog. Mater. Sci., 93, 45 (2018). https://doi.org/10.1016/j.pmatsci.2017.08.003
  2. C. J, Bae, A. Ramachandran, K.W. Chung and S. J. Park, J. Korean Ceram. Soc., 54, 470 (2017). https://doi.org/10.4191/kcers.2017.54.6.12
  3. K. Cicha, Z. Li, K. Stadlamnn, A. Ovsianikov, R. Markut-Kohl, R. Liska and J. Stampfl, J. Appl. Phys., 110, 064911 (2011). https://doi.org/10.1063/1.3639304
  4. C. R. Myers, S. R. Arwade, E. Iesulauro, P. A. Wawrzynek, M. Grigoriu, A. R. Ingraffea, P. R. Dawson, M. P. Miller and J. P. Sethna, Mater. Res. Soc. Symp. Proc., 538, 509 (1998).
  5. D. Kokkinis, M. Schaffner and A. R. Studart, Nat. Commun., 6, 1 (2015).
  6. A. Paolini, S. Kollmannsberger and E. Rank, Addit. Manuf., 30, 100894 (2019).
  7. J. W. Choi and H. C. Kim, J. Korean Soc. Manuf. Process. Eng., 14, 1 (2015).
  8. R. Singh, R. Kumar, I. Farina, F. Colangelo, L. Feo and F. Fraternali, Polymers, 11, 62 (2019). https://doi.org/10.3390/polym11010062
  9. L. R. Lopes, A. F. Silva and O. S. Carneiro, Addit. Manuf., 23, 45 (2018). https://doi.org/10.1016/j.addma.2018.06.027
  10. K. M. Jeong, J. M. Won, Y. K. Lee and K. Koseki, J. Korea TAPPI, 46, 46 (2014).
  11. J. D. Cho, S. H. Kim, I. C. Chang, K. S. Kim and J.W. Hong, Macromol. Res., 15, 560 (2007). https://doi.org/10.1007/BF03218831
  12. M. C. Rusu, C. Block, G. Van Assche and B. Van Mele, J. Therm. Anal. Calorim., 110, 287 (2012). https://doi.org/10.1007/s10973-012-2465-5
  13. K. C. Lee, J. W. Yoon, J. H. Kim, K. T. Hwang and K. S. Han, J. Korean Ceram. Soc., 23, 255 (2013).