DOI QR코드

DOI QR Code

Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정

Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme

  • Kim, Sangwoo (Department of Agricultural Civil Engineering, Kyungpook National University) ;
  • Lee, Taehwa (Department of Agricultural Civil Engineering, Kyungpook National University) ;
  • Chun, Beomseok (Department of Agricultural Civil Engineering, Kyungpook National University) ;
  • Jung, Younghun (Department of Advanced Science and Technology Convergence, Kyungpook National University) ;
  • Jang, Won Seok (Division of Public Infrastructure Assessment, Environmental Assessment Group, Korea Environment Institute) ;
  • Sur, Chanyang (Department of Civil and Environmental Engineering, Sejong University) ;
  • Shin, Yongchul (Department of Agricultural Civil Engineering, Kyungpook National University)
  • 투고 : 2020.07.13
  • 심사 : 2020.10.20
  • 발행 : 2020.11.30

초록

We estimated the spatio-temporally distributed soil moisture using Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images and soil moisture data assimilation technique in South Korea. Soil moisture data assimilation technique can extract the hydraulic parameters of soils using observed soil moisture and GA (Genetic Algorithm). The SWAP (Soil Water Atmosphere Plant) model associated with a soil moisture assimilation technique simulates the soil moisture using the soil hydraulic parameters and meteorological data as input data. The soil moisture based on Sentinel-1A/B was validated and evaluated using the pearson correlation and RMSE (Root Mean Square Error) analysis between estimated soil moisture and TDR soil moisture. The soil moisture data assimilation technique derived the soil hydraulic parameters using Sentinel-1A/B based soil moisture images, ASOS (Automated Synoptic Observing System) weather data and TRMM (Tropical Rainfall Measuring Mission)/GPM (Global Precipitation Measurement) rainfall data. The derived soil hydrological parameters as the input data to SWAP were used to simulate the daily soil moisture values at the spatial domain from 2001 to 2018 using the TRMM/GPM satellite rainfall data. Overall, the simulated soil moisture estimates matched well with the TDR measurements and Sentinel-1A/B based soil moisture under various land surface conditions (bare soil, crop, forest, and urban).

키워드

참고문헌

  1. Entekhabi, D., E. G. Njoku, P. E. O'Neill, K. H. Kellogg, W. T. Crow, W. N. Edelstein, J. K. Entin, S. D. Goodman, T. J. Jackson, J. Johnson, J. Kimball, J. R. Piepmeier, R. D. Koster, N. Martin, K. C. McDonal, M. Moghaddam, S. Moran, R. Reichle, J. C. Shi, M. W. Spencer, S. W. Thurman, L. Tsang, and J. Van Zyl, 2010. The soil moisture active passive (SMAP) mission. Proceedings of the IEEE 98(5): 704-716. doi:10.1109/JPROC.2010.2043918.
  2. Gao, Q., M. Zribi, M. Escorihuela, and N. Baghdadi, 2017. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors 17(9):1966. doi:10.3390/s17091966.
  3. Goldberg, D. E., 1989. Genetic algorithms in search and optimization and machine learning. Addison-Wesley Publiching, New York.
  4. Holland, J. H., 1975. Adaptation in natural and artificial system. University of Michigan press, Ann Arbor, MI.
  5. Hornacek, M., W. Wagner, D. Sabel, H. L. Truong, P. Snoeij, T. Hahmann, E. Diedrich, and M. Doubkova, 2012. Potential for high resolution systematic global surface soil moisture retrieval via change detection using Sentinel-1. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(4): 1303-1311. doi:10.1109/jstars.2012.2190136.
  6. Hou, A. Y., G. Skofronick-Jackson, and E. F. Stocker, 2013. The global precipitation measurement (GPM) mission: Overview and us science status. Bulletin of the American Meteorological Society 95(5): 701-722. doi:10.1175/BAMS-D-13-00164.1.
  7. Imaoka, K., M. Kachi, H. Fujii, H. Murakami, M. Hori, A. Ono, T. Igarashi, K. Nakagawa, T. Oki, Y. Honda, and H. Shimoda, 2010. Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change. Proceedings of the IEEE 98(5): 717-734. doi:10.1109/JPROC.2009.2036869.
  8. Kerr, Y. H., P. Waldteufel, J. P. Wigneron, J. A. M. J. Martinuzzi, J. Font, and M. Berger, 2001. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience and Remote Sensing 39(8): 1729-1735. https://doi.org/10.1109/36.942551
  9. Lee, S. J., S. W. Hong, J. Cho, and Y. W. Lee, 2017. Experimental retrieval of soil moisture for cropland in South Korea using sentinel-1 SAR data. Korean Journal of Remote Sensing 33(6): 947-960 (in Korean). doi:10.7780/kjrs.2017.33.6.1.4.
  10. Lee, T., S. Kim, Y. Jung, and Y. Shin, 2018. Assessment of agricultural drought using satellite-based TRMM/GPM precipitation images: At the province of Chungcheongbuk-do. Journal of the Korean Society of Agricultural Engineers 60(4): 73-82. doi:10.5389/KSAE.2018.60.4.073.
  11. Njoku, E. G., T. J. Jackson, V. Lakshmi, T. K. Chan, and S. V. Nghiem, 2003. Soil moisture retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing 41(2): 215-229. doi:10.1109/TGRS.2002.808243.
  12. Paloscia, S., S. Pettinato, E. Santi, C. Notarnicola, L. Pasolli, and A. Reppucci, 2013. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment 134: 234-248. doi:10.1016/j.rse.2013.02.027.
  13. Peters, J., H. Lievens, B. D. Baets, and N. E. C. Verhoest, 2012. Accounting for seasonality in a soil moisture change detection algorithm for ASAR wide swath time series. Hydrology and Earth System Sciences 16(3): 773-786. doi:10.5194/hess-16-773-2012.
  14. Pierdicca, N., L. Pulvirenti, and G. Pace, 2014. A prototype software package to retrieve soil moisture from Sentinel-1 data by using a bayesian multitemporal algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7(1): 153-166. doi:10.1109/jstars.2013.2257698.
  15. Sabins, F. F., 2007. Remote sensing: Principles and applications. Waveland Press.
  16. Shin, Y., K. S. Choi, Y. Jung, J. E. Yang, and K. J. Lim, 2016a. Soil moisture estimation and drought assessment at the spatiotemporal scales using remotely sensed data: (I) Soil moisture. Journal of Korean Society on Water Environment 32(1): 60-6. doi:10.15681/KSWE.2016.32.1.60.
  17. Shin, Y., K. S. Choi, Y. Jung, J. E. Yang, and K. J. Lim, 2016b. Soil moisture estimation and drought assessment at the spatiotemporal scales using remotely sensed data: (II) Drought. Journal of Korean Society on Water Environment 32(1): 70-79. doi:10.15681/KSWE.2016.32.1.70.
  18. Simpson, J., C. Kummerow , W. K. Tao, and R. F. Adler, 1996. On the tropical rainfall measuring mission (TRMM). Meteorology and Atmospheric Physics 60(1-3): 19-36. https://doi.org/10.1007/BF01029783
  19. Small, D., 2011. Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Transactions on Geoscience and Remote Sensing 49(8): 3081-3093. doi:10.1109/tgrs.2011.2120616.
  20. van Dam, J. C., J. Huygen, J. G. Wesseling, R. A. Feddes, P. Kabat, P. E. V. van Walsum, P. Groenendijk, and C. A. van Diepen, 1997. Theory of SWAP version 2.0; simulation of water flow, solute transport and plant growth in the soil-water-atmosphere-plant environment. Wageningen University and Alterra. Technical Document 45.
  21. van Dam, J. C., 2000. Field-scale water flow and solute transport. SWAP model concepts, parameter estimation and case studies. Ph.D. diss., Wageningen University, Wageningen, The Netherlands.
  22. van Genuchten, M. T., 1980. Aclosed-form equation foe predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44(5): 892-898. doi:10.2136/sssaj1980.03615995004400050002x.