DOI QR코드

DOI QR Code

Genetic Diversity and Population Structure of Peanut (Arachis hypogaea L.) Accessions from Five Different Origins

  • Zou, Kunyan (Department of Plant Bioscience, Pusan National University) ;
  • Kim, Ki-Seung (FarmHannong, Ltd.) ;
  • Lee, Daewoong (Department of Plant Bioscience, Pusan National University) ;
  • Jun, Tae-Hwan (Department of Plant Bioscience, Pusan National University)
  • Received : 2020.09.02
  • Accepted : 2020.09.12
  • Published : 2020.12.01

Abstract

Peanut is an allotetraploid derived from a single recent polyploidization. Polyploidization has been reported to have caused significant loss in genetic diversity during the domestication of cultivated peanuts. Single nucleotide polymorphism (SNP)-based markers such as cleaved amplified polymorphic sequences (CAPS) derived from next-generation sequencing (NGS) have been developed and widely applied for breeding and genetic research in peanuts. This study aimed to identify the genetic diversity and population structure using 30 CAPS markers and 96 peanut accessions from five different origins. High genetic dissimilarities were detected between the accessions from Korea and those from the other three South American origins generally regarded as the origin of peanuts, while the accessions from Brazil and Argentina presented the lowest genetic dissimilarity. Based on the results of the present study, accessions from Korea have unique genetic variation compared to those from other countries, while accessions from the other four origins are closely related. Our study identified the genetic differentiation in 96 peanut accessions from five different origins, and this study also showed the successful application of SNP information derived from re-sequencing based on NGS technology.

Keywords

References

  1. Bertioli, D. J., S. B. Cannon, L. Froenicke, G. Huang, A. D. Farmer, E. K. Cannon, X. Liu, D. Gao, J. Clevenger, and S. Dash. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics 48(4) : 438-446. https://doi.org/10.1038/ng.3517
  2. Bertioli, D. J., S. C. Leal-Bertioli, and H. T. Stalker. 2016. The peanut genome: The history of the consortium and the structure of the genome of cultivated peanut and its diploid ancestors. Peanuts, Elsevier: 147-161.
  3. Chen, X., Q. Lu, H. Liu, J. Zhang, Y. Hong, H. Lan, H. Li, J. Wang, H. Liu, and S. Li. 2019. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Molecular Plant 12(7) : 920-934. https://doi.org/10.1016/j.molp.2019.03.005
  4. Dhillon, S. S., A. V. Rake, and J. P. Miksche. 1980. Reassociation kinetics and cytophotometric characterization of peanut (Arachis hypogaea L.) DNA. Plant Physiology 65(6) : 1121-1127. https://doi.org/10.1104/pp.65.6.1121
  5. Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology 14(8) : 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  6. FAO. 2020. Food Outlook - Biannual Report on Global Food Markets. Rome, Italy.
  7. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  8. Feng, S., X. Wang, X. Zhang, P. M. Dang, C. C. Holbrook, A. K. Culbreath, Y. Wu, and B. Guo. 2012. Peanut (Arachis hypogaea) expressed sequence tag project: progress and application. Comparative and Functional Genomics 2012.
  9. Grasso, A. N., V. Goldberg, E. A. Navajas, W. Iriarte, D. Gimeno, I. Aguilar, J. F. Medrano, G. Rincon, and G. Ciappesoni. 2014. Genomic variation and population structure detected by single nucleotide polymorphism arrays in Corriedale, Merino and Creole sheep. Genetics and Molecular Biology 37(2) : 389-395. https://doi.org/10.1590/S1415-47572014000300011
  10. Kang, Y. J., Y.-K. Ahn, K.-T. Kim, and T.-H. Jun. 2016. Resequencing of Capsicum annuum parental lines (YCM334 and Taean) for the genetic analysis of bacterial wilt resistance. BMC Plant Biology 16(1) : 235. https://doi.org/10.1186/s12870-016-0931-0
  11. Khera, P., H. Upadhyaya, M. Pandey, M. Roorkiwal, M. Sriswathi, P. Janila, Y. Guo, M. McKain, E. Nagy, and S. Knapp. 2013. SNP-based genetic diversity in the reference set of peanut (Arachis spp.) by developing and applying cost-effective KASPar genotyping assays. Plant Genome 6 : 1-11.
  12. Kim, K.-S., D. Lee, S. B. Bae, Y.-C. Kim, I.-S. Choi, S. T. Kim, T.-H. Lee, and T.-H. Jun. 2017. Development of SNP-Based Molecular Markers by Re-Sequencing Strategy in Peanut. Plant Breeding and Biotechnology 5(4) : 325-333. https://doi.org/10.9787/PBB.2017.5.4.325
  13. Kottapalli, K. R., M. D. Burow, G. Burow, J. Burke, and N. Puppala. 2007. Molecular characterization of the US peanut mini core collection using microsatellite markers. Crop Science 47(4) : 1718-1727. https://doi.org/10.2135/cropsci2006.06.0407
  14. Landjeva, S., V. Korzun, and G. Ganeva. 2006. Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925-2003 using microsatellites. Genetic Resources and Crop Evolution 53(8) : 1605-1614. https://doi.org/10.1007/s10722-005-8718-4
  15. Lee, J., N. K. Izzah, M. Jayakodi, S. Perumal, H. J. Joh, H. J. Lee, S.-C. Lee, J. Y. Park, K.-W. Yang, and I.-S. Nou. 2015. Genomewide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biology 15(1) : 1-11. https://doi.org/10.1186/s12870-014-0410-4
  16. Peakall, R. and P. E. Smouse. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1) : 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  17. Rasheed, A., Y. Hao, X. Xia, A. Khan, Y. Xu, R. K. Varshney, and Z. He. 2017. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Molecular Plant 10(8) : 1047-1064. https://doi.org/10.1016/j.molp.2017.06.008
  18. Ren, J., D. Sun, L. Chen, F. M. You, J. Wang, Y. Peng, E. Nevo, D. Sun, M.-C. Luo, and J. Peng. 2013. Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat. International Journal of Molecular Sciences 14(4) : 7061-7088. https://doi.org/10.3390/ijms14047061
  19. Ren, X.-P., H.-F. Jiang, B.-S. Liao, X.-J. Zhang, Y. Lei, G.-Q. Huang, L.-Y. Yan, and Y.-N. Chen. 2011. Distributing and genetic diversity of high oleic acid germplasm in Peanut (Arachia Hypogaea L.) core collection of China. Journal of Plant Genetic Resources 12(4) : 513-518.
  20. Robledo, G., G. Lavia, and G. Seijo. 2009. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theoretical and Applied Genetics 118(7) : 1295-1307. https://doi.org/10.1007/s00122-009-0981-x
  21. Saghai-Maroof, M. A., K. M. Soliman, R. A. Jorgensen and R. Allard. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences 81(24) : 8014-8018. https://doi.org/10.1073/pnas.81.24.8014
  22. Seijo, G., G. I. Lavia, A. Fernandez, A. Krapovickas, D. A. Ducasse, D. J. Bertioli, and E. A. Moscone. 2007. Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. American Journal of Botany 94(12) : 1963-1971. https://doi.org/10.3732/ajb.94.12.1963
  23. Singh, N., D. R. Choudhury, A. K. Singh, S. Kumar, K. Srinivasan, R. Tyagi, N. Singh, and R. Singh. 2013. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PloS One 8(12) : e84136. https://doi.org/10.1371/journal.pone.0084136
  24. Smartt, J., W. Gregory, and M. P. Gregory. 1978. The genomes of Arachis hypogaea. L. Cytogenetic studies of putative genome donors. Euphytica 27(3) : 665-675. https://doi.org/10.1007/BF00023701
  25. Smykal, P., M. Nelson, J. Berger, and E. Von Wettberg. 2018. The Impact of Genetic Changes during Crop Domestication. Agronomy 8(7) : 119. https://doi.org/10.3390/agronomy8070119
  26. Tambasco-Talhari, D., M. M. d. Alencar, C. C. P. d. Paz, G. M. d. Cruz, A. d. A. Rodrigues, I. U. Packer, L. L. Coutinho, and L. C. d. A. Regitano. 2005. Molecular marker heterozygosities and genetic distances as correlates of production traits in F1 bovine crosses. Genetics and Molecular Biology 28(2) : 218-224. https://doi.org/10.1590/S1415-47572005000200007
  27. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24(8) : 1596-1599. https://doi.org/10.1093/molbev/msm092
  28. Tamura, K., M. Nei, and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences 101(30) : 11030-11035. https://doi.org/10.1073/pnas.0404206101
  29. Temsch, E. M. and J. Greilhuber. 2000. Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43(3) : 449-451. https://doi.org/10.1139/g99-130
  30. Wang, Y., W. Liu, L. Xu, Y. Wang, Y. Chen, X. Luo, M. Tang, and L. Liu. 2017. Development of SNP markers based on transcriptome sequences and their application in germplasm identification in radish (Raphanus sativus L.). Molecular Breeding 37(3) : 26. https://doi.org/10.1007/s11032-017-0632-x
  31. Yang, H., Y. Tao, Z. Zheng, C. Li, M. W. Sweetingham, and J. G. Howieson. 2012. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics 13(1) : 318. https://doi.org/10.1186/1471-2164-13-318
  32. Zhou, X., Y. Xia, X. Ren, Y. Chen, L. Huang, S. Huang, B. Liao, Y. Lei, L. Yan, and H. Jiang. 2014. Construction of a SNPbased genetic linkage map in cultivated peanut based on large scale marker development using next-generation doubledigest restriction-site-associated DNA sequencing (ddRAD seq). BMC Genomics 15(1) : 351. https://doi.org/10.1186/1471-2164-15-351