DOI QR코드

DOI QR Code

Development of Real-time Quantitative PCR Assay based on SYBR Green I and TaqMan Probe for Detection of Apple Viruses

사과 바이러스 검정을 위한 SYBR Green I 및 TaqMan probe 기반의 real-time PCR 검사법 개발

  • Heo, Seong (Department of Horticulture, Kongju National University) ;
  • Chung, Yong Suk (Department of Plant Resources and Environment, Jeju National University)
  • 허성 (공주대학교 산업과학대학 원예학과) ;
  • 정용석 (제주대학교 생명자원과학대학 식물자원환경전공)
  • Received : 2020.06.13
  • Accepted : 2020.09.27
  • Published : 2020.12.01

Abstract

Virus infections of apples result in lowered commercial qualities such as low sugar content, weakened tree vigor, and malformed fruits. An effective way to control viruses is to produce virus-free plants based on the development of an accurate and sensitive diagnostic method. In this study, real-time PCR assays based on SYBR Green I and TaqMan probes were developed for detecting ASGV, ASPV, and ApMV viruses. These methods can detect and quantify 103 to 1011 RNA copies/μL of each virus separately. Compared with methods with two different dyes, the SYBR Green I-based method was efficient for virus detection as well as for assay using the TaqMan probe. Field tests demonstrated that real-time PCR methods developed in this study were applicable to high-throughput diagnoses for virus research and plant quarantine.

본 연구는 사과 바이러스 ASGV, ASPV 및 ApMV를 각각 정밀하게 진단하고자 SYBR Green I 및 TaqMan probe, 두 종류의 다른 chemical dye를 사용하여 quantitative real-time PCR 검정법을 개발하고자 하였다. 1. 사과 바이러스 ASGV, ASPV 및 ApMV의 국내분리주를 바탕으로 하여 cloning 및 in vitro transcription을 수행해 10배 희석단위 표준시료를 제작하였다. 각 바이러스에 대한 SYBR Green I용 프라이머와 TaqMan probe용 프라이머 및 프로브를 디자인하였다. 2. 상기 제작된 프라이머와 프로브를 이용해 표준시료를 대상으로 real-time PCR을 수행하여 각 바이러스의 증폭곡선과 검량선을 구할 수 있었다. Real-time PCR 결과, SYBR Green I기반의 검정법은 TaqMan probe기반의 검정법 못지 않은 결과를 보여주었으며, 적은 비용에 대량 검정이 요구되는 곳에 효과적으로 응용될 수 있을 것이다. 3. 현장평가를 본 실험에서 개발된 TaqMan probe기반의 real-time PCR검정법과 기존의 RT-PCR검정법과 비교분석하였다. 그 결과 real-time PCR 검정법은 singleplex 및 multiplex RT-PCR보다 더 민감하고 정확한 결과를 내어 RT-PCR로 검출할 수 없는 농도까지 검정할 수 있음을 입증하였다. 4. 본 실험에서 개발한 real-time PCR검정법은 검역현장과 같은 대량의 검사가 요구되는 곳에서는 SYBR Green I 기반의 검정법을, 바이러스 연구분야에서는 세밀한 정량이 가능한 TaqMan probe 방식의 검정법이 활용될 것으로 기대한다.

Keywords

References

  1. Chang, S., J. Puryear, and J. Cairney. 1993. A simple and efficient method for isolation RNA from pine trees. Plant Molecular Biology Reporter 11 : 113-116. https://doi.org/10.1007/BF02670468
  2. Chae, J. H. 2016. An improvement plan for nursery tree production and distribution. Daegu Gyeongbuk Development Institute, South Korea. pp. 1-22 (In Korean).
  3. Hassan, M., A. Myrta, and J. Polak. 2006. Simultaneous detection and identification of four pome fruit viruses by one-tube pentaplex RT-PCR. Journal of Virological Methods 133 : 124-129. https://doi.org/10.1016/j.jviromet.2005.11.002
  4. Heo, S., H. R. Kim, and H. J. Lee. 2019. Development of a quantitative real-time nucleic acid sequence based amplification (NASBA) assay for early detection of Apple scar skin viroid. Plant Pathol Journal 35 : 164-171. https://doi.org/10.5423/PPJ.OA.10.2018.0206
  5. James, D., A. Varga, G. D. Jesperson, M. Navratil, D. Safarova, F. Constable, M. Horner, K. Eastwell, and W. Jelkmann. 2013. Identification and complete genome analysis of a virus variant or putative new foveavirus associated with apple green crinkle disease. Archives of Virology 158 : 1877-1887. https://doi.org/10.1007/s00705-013-1678-7
  6. Kim, H. R., D. H. Lee, J. S. Kim, S. H. Lee, K. O. Yun, and H. I. Jang. 2004. Occurrence and Bioassay of Apple scar skin viroid (ASSVd) in Korea. Poster session presented at Korean Society for Horticultural Science, Horticultural Science and Technology 22 : 38.
  7. Korean Statistical Information Service (KOSIS). 2018. http://kosis.kr/index/index.do
  8. Kumar, S., L. Singh, R. Ram, A. A. Zaidi, and V. Hallan. 2014. Simultaneous detection of major pome fruit viruses and a viroid. Indian Journal of Microbiology 54 : 203-210. https://doi.org/10.1007/s12088-013-0431-y
  9. Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35 : 1547-1549. https://doi.org/10.1093/molbev/msy096
  10. Mackay, I. M. 2004. Real-time PCR in the microbiology laboratory. Clinical Microbiology and Infection 10 : 190-212. https://doi.org/10.1111/j.1198-743X.2004.00722.x
  11. Magome, H., N. Yoshikawa, T. Takahashi, T. Ito, and T. Miyakawa. 1997. Molecular variability of the genomes of capilloviruses from apple, Japanese pear, European pear and citrus trees. Phytopathology 87 : 389-396. https://doi.org/10.1094/PHYTO.1997.87.4.389
  12. Malandraki, I., D. Beris, I. Isaioglou, A. Olmos, C. Varveri, and N. Vassilakos. 2017. Simultaneous detection of three pome fruit tree viruses by one-step multiplex quantitative RT-PCR. PLoS ONE 12 : e0180877. https://doi.org/10.1371/journal.pone.0180877
  13. Maliogka, V., A. Minafra, P. Saldarelli, A. Ruiz-Garcia, M. Glasa, N. Katis, and A. Olmos. 2018. Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies. Viruses 10 : 436. https://doi.org/10.3390/v10080436
  14. Menzel, W., W. Jelkmann, and E. Maiss. 2002. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. Journal of Virological Methods 99 : 81-92. https://doi.org/10.1016/S0166-0934(01)00381-0
  15. Nemeth, M. 1986. Virus, Mycoplasma and Rickettsia Diseases of Fruit Trees. Nijhoff and Dr. W. Junk Publishers. p. 750.
  16. Nickel, O. and T. V. M. Fajardo. 2014. Detection of viruses in apples and pears by real time RT-PCR using 5'-hydrolysis probes. Journal of Plant Pathology 96 : 207-213.
  17. Nickel, O., W. Jelkmann, and G. B. Kuhn. 1999. Occurrence of Apple stem grooving capillovirus in Santa Catarina, Brazil, detected by RT-PCR. Fitopatologia Brasileira 24 : 444-446.
  18. Winkowska, L., L. Grimova, and P. Rysanek. 2016. Quantitative detection of four pome fruit viruses in apple trees throughout the year. Phytopathologia Mediterranea 55 : 207-224.