DOI QR코드

DOI QR Code

Anti-skin Aging Potential of Alcoholic Extract of Phragmites communis Rhizome

  • Ha, Chang Woo (College of Health Sciences, Kangwon National University) ;
  • Kim, Sung Hyeok (College of Health Sciences, Kangwon National University) ;
  • Lee, Sung Ryul (Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University) ;
  • Jang, Sohee (College of Health Sciences, Kangwon National University) ;
  • Namkoong, Seung (College of Health Sciences, Kangwon National University) ;
  • Hong, Sungsil (College of Health Sciences, Kangwon National University) ;
  • Lim, Hyosun (Korea Research Institute Bio Science Co., Ltd.) ;
  • Kim, Youn Kyu (Korea Research Institute Bio Science Co., Ltd.) ;
  • Sohn, Eun-Hwa (College of Health Sciences, Kangwon National University)
  • Received : 2020.06.24
  • Accepted : 2020.08.03
  • Published : 2020.12.01

Abstract

Chronological aging and photoaging affect appearance, causing wrinkles, pigmentation, texture changes, and loss of elasticity in the skin. Phragmites communis is a tall perennial herb used for its high nutritional value and for medicinal purposes, such as relief from fever and vomiting and facilitation of diuresis. In this study, we investigated the effects of ethanol extract of P. communis rhizome (PCE) on skin aging. The total flavonoid and total phenolic content in PCE were 2.92 ± 0.007 ㎍ of quercetin equivalents (QE) and 231.8 ± 0.001 ㎍ of gallic acid equivalents (GAE) per 100 mg of dried extract (n = 3). The half-maximal inhibitory concentration (IC50) values of PCE for 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and hydrogen peroxide scavenging activities were 0.96 and 0.97 mg/mL, respectively. PCE showed inhibitory effects on tyrosinase when L-tyrosine (IC50 = 1.25 mg/mL) and L-3,4-dihydroxyphenylalanine (IC50 = 0.92 mg/mL) were used as substrates. PCE treatment up to 200 ㎍/mL for 24 h did not cause any significant cytotoxicity in B16F10 melanocytes, human dermal fibroblasts (HDFs), and HaCaT keratinocytes. In B16F10 melanocytes, PCE (25 and 50 ㎍ /mL) inhibited melanin production and cellular tyrosinase activity after challenge with α-melanocyte-stimulating hormone (α-MSH; p < 0.05). In HDFs, PCE suppressed the mRNA expression of matrix metalloproteinase-1 (MMP-1) and reduced the activity of elastase (p < 0.05). In addition, ultraviolet B (UVB)-mediated downregulation of hyaluronic acid synthase-2 gene expression in HaCaT keratinocytes was also effectively suppressed by PCE treatment. Overall, our results showed that PCE has potential anti-skin aging activity associated with the suppression of hyperpigmentation, wrinkle formation, and reduction in dryness. PCE is a promising candidate for the development of an anti-skin aging cosmetic ingredient.

Keywords

References

  1. Cai, Y., Q. Luo, M. Sun and H. Corke. 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74:2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047
  2. Chang, T.S. 2009. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 10:2440-2475. https://doi.org/10.3390/ijms10062440
  3. Costin, G.E. and V.J. Hearing. 2007. Human skin pigmentation:Melanocytes modulate skin color in response to stress. FASEB J. 21:976-994. https://doi.org/10.1096/fj.06-6649rev
  4. Fisher, G.J., S. Kang, J. Varani, Z. Bata-Csorgo, Y. Wan, S. Datta and J.J. Voorhees. 2002. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 138:1462-1470.
  5. Fisher, G.J., T. Quan, T. Purohit, Y. Shao, M.K. Cho, T. He, J. Varani, S. Kang and J.J. Voorhees. 2009. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Am. J. Pathol. 174:101-114. https://doi.org/10.2353/ajpath.2009.080599
  6. Freitas-Rodriguez, S., A.R. Folgueras and C. Lopez-Otin. 2017. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim. Biophys. Acta. Mol. Cell. Res. 1864: 2015-2025. https://doi.org/10.1016/j.bbamcr.2017.05.007
  7. Ganceviciene, R., A.I. Liakou, A. Theodoridis, E. Makrantonaki and C.C. Zouboulis. 2012. Skin anti-aging strategies. Dermato-endocrinology 4:308-319. https://doi.org/10.4161/derm.22804
  8. Gillbro, J.M. and M.J. Olsson. 2011. The melanogenesis and mechanisms of skin-lightening agents--existing and new approaches. Int. J. Cosmet. Sci. 33: 210-221. https://doi.org/10.1111/j.1468-2494.2010.00616.x
  9. Helfrich, Y.R., D.L. Sachs and J.J. Voorhees. 2008. Overview of skin aging and photoaging. Dermatol. Nurs. 20:177-183.
  10. Jadoon, S., S. Karim, M.H. Bin Asad, M.R. Akram, A.K. Khan, A. Malik, C. Chen and G. Murtaza. 2015. Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. Oxid. Med. Cell. Longev. 2015:709628. https://doi.org/10.1155/2015/709628
  11. Kim, N.S., S. Shin, G.G. Shin and O.S. Bang. 2019. Genotoxicity evaluation of a Phragmitis rhizoma extract using a standard battery of in vitro and in vivo assays. J. Ethnopharmacol. 241:112025. https://doi.org/10.1016/j.jep.2019.112025
  12. Koo, H.J., S.R. Lee, S.C. Kang, J.E. Kwon, D.E. Lee, E.S. Choung, J.S. Lee, J.W. Lee, Y. Park, D.S. Sim and E.H. Sohn. 2017. The suppressive effect of Pueraria lobata root extract and its biotransformed preparation against skin wrinkle formation. Korean J. Plant Res. 30:272-279. https://doi.org/10.7732/kjpr.2017.30.3.272
  13. Lee, S.H., S.K. Jeong and S.K. Ahn. 2006. An update of the defensive barrier function of skin. Yonsei Med. J. 47:293-306. https://doi.org/10.3349/ymj.2006.47.3.293
  14. Li, W.H., H.K. Wong, J. Serrano, M. Randhawa, S. Kaur, M.D. Southall and R. Parsa. 2017. Topical stabilized retinol treatment induces the expression of HAS genes and HA production in human skin in vitro and in vivo. Arch. Dermatol. Res. 309:275-283. https://doi.org/10.1007/s00403-017-1723-6
  15. Miao, M.S., L.Y. Gu, X.Y. Fang and Y.Y. Miao. 2004. Effect of Phragmites communis polysaccharide on the aged-model mice. Zhongguo Zhong Yao Za Zhi 29:673-675.
  16. Morihara, K. and H. Tsuzuki. 1978. Phosphoramidon as an inhibitor of elastase from Pseudomonas aeruginosa. Jpn. J. Exp. Med. 48:81-84.
  17. Mukherjee, P.K., N. Maity, N.K. Nema and B.K. Sarkar. 2011. Bioactive compounds from natural resources against skin aging. Phytomedicine 19:64-73. https://doi.org/10.1016/j.phymed.2011.10.003
  18. Papakonstantinou, E., M. Roth and G. Karakiulakis. 2012. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinology 4:253-258. https://doi.org/10.4161/derm.21923
  19. Park, J.C. and G. Choi. 2016. Review on herbal medicinal materials in the Korean pharmacopoeia and the Korean herbal pharmacopoeia. Korean Herb. Med. Inf. 4:9-35 (in Korean). https://doi.org/10.4258/jksmi.1998.4.1.9
  20. Park, Y.A., S.R. Lee, J.W. Lee, H.J. Koo, S.A. Jang, S.W. Yun, H.J. Kim, J.S. Woo, M.R. Park, S.C. Kang, Y.K. Kim and E.H. Sohn. 2018. Suppressive effect of fermented Angelica tenuissima root extract against photoaging: Possible involvement of hemeoxygenase-1. J. Microbiol. Biotechnol. 28:1391-1400. https://doi.org/10.4014/jmb.1805.05065
  21. Saewan, N. and A. Jimtaisong. 2015. Natural products as photoprotection. J. Cosme. Dermatol. 14:47-63. https://doi.org/10.1111/jocd.12123
  22. Shin, J.W., S.H. Kwon, J.Y. Choi, J.I. Na, C.H. Huh, H.R. Choi and K.C. Park. 2019. Molecular mechanisms of dermal aging and antiaging approaches. Int. J. Mol. Sci. 20:2126. https://doi.org/10.3390/ijms20092126
  23. Sim, M.O., J.R. Ham and M.K. Lee. 2017. Young leaves of reed (Phragmites communis) suppress melanogenesis and oxidative stress in B16F10 melanoma cells. Biomed. Pharmacother. 93:165-171. https://doi.org/10.1016/j.biopha.2017.06.037
  24. Smit, N., J. Vicanova and S. Pavel. 2009. The hunt for natural skin whitening agents. Int. J. Mol. Sci. 10:5326-5349. https://doi.org/10.3390/ijms10125326
  25. So, G.S., S.R. Lee, S.H. Kim, C.W. Ha, Y. Park, S. Jang, J.P. Bak, H.J. Koo and E.H. Sohn. 2019. Antioxidant and antimelanogenic effects of Stevia rebaudiana flower extract. Korean J. Plant Res. 32:220-227. https://doi.org/10.7732/KJPR.2019.32.3.220
  26. Tsuji, N., S. Moriwaki, Y. Suzuki, Y. Takema and G. Imokawa. 2001. The role of elastases secreted by fibroblasts in wrinkle formation: Implication through selective inhibition of elastase activity. Photochem. Photobiol. 74:283-290. https://doi.org/10.1562/0031-8655(2001)074<0283:TROESB>2.0.CO;2