DOI QR코드

DOI QR Code

Effect of β-glucan on Epithelial Inflammation Induced by Atopic Dermatitis through Endocannabinoid System Activity

β-glucan의 Endocannabinoid system 활성을 통한 아토피피부염 유발 상피 염증 억제 효과

  • Seo, Il Bok (Dept. of anatomy, college of Korean Medicine, Semyung University) ;
  • Ahn, Sang Hyun (Dept. of anatomy, college of Korean Medicine, Semyung University) ;
  • Kim, Ki Bong (Dept. of Korean Pediatrics, Korean Medicine Hospital, Pusan National University)
  • 서일복 (세명대학교 한의과대학 해부학교실) ;
  • 안상현 (세명대학교 한의과대학 해부학교실) ;
  • 김기봉 (부산대학교한방병원 한방소아과,)
  • Received : 2020.09.21
  • Accepted : 2020.11.22
  • Published : 2020.11.30

Abstract

Objectives This study was conducted to confirm the inhibitory effect of β-glucan on epithelial inflammation induced by atopic dermatitis through Endocannabinoid system (ECS) activity. Methods Six-week-old NC/Nga mice were divided into a control group (Ctrl), atopic dermatitis elicitation group (ADE), and a β-glucan-treated group (β-glucan treatment after atopy dermatitis elicitation, β-GT). After 3 weeks, CB1, CB2, and GPR55 were observed to confirm the regulation of ECS activity, and filaggrin in the stratum corneum and Kallikrein-related peptidase (KLK) 7 in the stratum corneum and protease activated receptor (PAR)-2 were observed to confirm the inhibition of the inflammation, Phosphorylated extracellular signal-related kinase (p-ERK), Phosphorylated mammalian target of rapamycin (p-mTOR), and E-Cadherin were observed to confirm microenvironmental regulation. Results β-GT was significantly increased in CB1, CB2, and GPR55 positive reactions compared to that of the ADE. In positive reaction of the filaggrin in the stratum corneum, β-GT was significantly increased than that of the ADE. For KLK7 positive and PAR2 positive, β-GT was significantly reduced compared to the ADE. The p-ERK-positive and p-mTOR-positive reactions were significantly reduced in β-GT than in ADE. E-cadherin positive reaction was significantly increased in β-GT than in ADE (All p < 0.01). Conclusions It was confirmed that β-glucan has the effect of inhibiting the epithelium induced by atopic dermatitis through the ECS activity.

Keywords

References

  1. Son SH, Ahn SH, Park SY, Kim KB. Hwangnyeonhaedoktang extracts ameliorates atopic dermatitis via epidermal lipid barrier regeneration in NC/Nga mouse. J Pediatr Korean Med. 2018;32(3):90-9. https://doi.org/10.7778/JPKM.2018.32.3.090
  2. Leung DY, Boguniewicz, M, Howell MD, Nomura I, Hamid QA. New insights into atopic dermatitis. J. Clin. Invest. 2004;113(5):651-657. https://doi.org/10.1172/JCI21060
  3. Engel-Yeger B, Mimouni D, Rozenman D, Shani-Adir A. Sensory processing patterns of adults with atopic dermatitis. J Eur Acad Dermatol Venereol. 2011;25(2):152-6. https://doi.org/10.1111/j.1468-3083.2010.03729.x
  4. Ahn KM, Kim JH, Kwon HJ, Chae YM, Hahm MI, Lee KJ, Park YM, Lee SY, Han MY, Kim WK. The prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in Korean children: nationwide cross-sectional survey using complex sampling design. J Korean Med Assoc. 2011;54(7):769-78. https://doi.org/10.5124/jkma.2011.54.7.769
  5. Kabashima K. New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy, and pruritus as a trinity. J Dermatol Sci. 2013;70(1):3-11. https://doi.org/10.1016/j.jdermsci.2013.02.001
  6. Park Y. Status of clinical practice on diagnosis and management of atopic dermatitis in Korea: a questionnaire survey of physicians. Allergy Asthma Respir Dis. 2013;1(3):257-65. https://doi.org/10.4168/aard.2013.1.3.257
  7. Callen J, Chamlin S, Eichenfield LF, Ellis C, Girardi M, Goldfarb M, Hanifin J, Lee P, Margolis D, Paller AS, Piacquadio D, Peterson W, Kaulback K, Fennerty M, Wintroub BU. A systematic review of the safety of topical therapies for atopic dermatitis. Br J Dermatol. 2007;156(2):203-21. https://doi.org/10.1111/j.1365-2133.2006.07538.x
  8. Pariser D. Topical corticosteroids and topical calcineurin inhibitors in the treatment of atopic dermatitis: focus on percutaneous absorption. Am J Ther. 2009;16(3):264-73. https://doi.org/10.1097/MJT.0b013e31818a975c
  9. Babicek K. Cechova I. Simon RR, Harwood M, Cox DJ. Toxicological assessment of a particulate yeast (1,3/1,6)-beta-D-glucan in rats. Food Chem Toxicol. 2007;45(9):1719-30. https://doi.org/10.1016/j.fct.2007.03.013
  10. Delaney B, Nicolosi RJ, Wilson TA, Carlson T, Frazer S, Zheng GH, Hess R, Ostergren K, Haworth J, Knutson N. Beta-glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic syrian golden hamsters. J Nutr. 2003:133(2):468-75. https://doi.org/10.1093/jn/133.2.468
  11. Delatte S. J, Evans J, Hebra,A, Adamson W, Othersen HB, Tagge EP. Effectiveness of beta-glucan collagen for treatment of partical-thickness burns in children. J Pediatr Surg. 2001;36(1):113-8. https://doi.org/10.1053/jpsu.2001.20024
  12. Hetland G, Ohno N, Aaberge IS, Lovik M. Protective effect of β-glucan against systemic Streptococcus pneumonia infection in mice. FEMS Immunol Med Microbiol. 2000;27(2):111-6. https://doi.org/10.1111/j.1574-695X.2000.tb01420.x
  13. Nicolosi R, Bell SJ, Bistrian BR, Greenberg I, Forse RA, Blackburn GL. Plasma lipid changes after supplementation with beta-glucan fiber from yeast. Am. J Clin Nutr. 1999;70(2):208-12. https://doi.org/10.1093/ajcn.70.2.208
  14. Chan GC, Chan WK, Sze DM. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009;2(25):1-11. doi: 10.1186/1756-8722-2-25.
  15. Kim IS, Kim SH, Kim JA, Yu DY, Kim GI, Park DC, Lim JM, Lee SS, Choi IS, Cho KK. Immunomodulatory Effects of β-1,3/1,6-glucan and Lactobacillus plantarum LM1004 on Atopic Dermatitis Models. J Life Sci. 2018;28(1):17-25.
  16. Keum BR, Hyeon JY, Choe SH, Jin JY, Jeong JW, Lim JM, Park DC, Cho KK, Choi EY, Choi IS. β-glucan Stimulates Release of TNF-α in Human Monocytic THP-1 Cells. J Life Sci. 2017;27(11):1256-61. https://doi.org/10.5352/JLS.2017.27.11.1256
  17. Yu CS, Kim SH, Kim JD. A study of the safety & effect of products containing ceramide, glucan for atopic dermatitis. J Soc Cosmet Scinetists Korea. 2004;30(4):533-41.
  18. Manzanares J, Julian M, Carrascosa A. Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes. Curr Neuropharmacology. 2006;4(3):239-57. https://doi.org/10.2174/157015906778019527
  19. Pacher P, Batkai S, Kunos G, The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacological Reviews. 2006;58(3):389-462. https://doi.org/10.1124/pr.58.3.2
  20. Miller LK, Devi LA. The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacological Reviews. 2011;63(3):461-70. https://doi.org/10.1124/pr.110.003491
  21. Luger TA. Neuromediators-a crucial component of the skin immune system. J Derma Sci. 2002;30(2):87-93. https://doi.org/10.1016/S0923-1811(02)00103-2
  22. Peng W, Novak N. Pathogenesis of atopic dermatitis. Clinical & Experimental Allergy. 2015;45(3):566-74. https://doi.org/10.1111/cea.12495
  23. Spergel J, Paller AS. Atopic dermatitis and the atopic march. J Allergy and Clinical Immunology. 2003;112(6):S118-S127. https://doi.org/10.1016/j.jaci.2003.09.033
  24. Kabashima K. New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy, and pruritus as a trinity. J Derma Sci. 2013;70(1):3-11. https://doi.org/10.1016/j.jdermsci.2013.02.001
  25. Lee HY. Improvement of skin barrier dysfunction by Scutellaria baicalensis GEOGI extracts through lactic acid fermentation. J Cosmetic Derma. 2019;18(1):183-91. https://doi.org/10.1111/jocd.12521
  26. Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A, Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin?. J Invest Derma. 1991;96(4):523-6. https://doi.org/10.1111/1523-1747.ep12470233
  27. Jensen JM, Folster-Holst R, Baranowsky A, Schunck M, Winoto-Morbach S, Neumann C, Schütze S, Proksch E. Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J Invest Derma. 2004;122(6):1423-31. https://doi.org/10.1111/j.0022-202X.2004.22621.x
  28. Schafer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nature Reviews Molecular Cell Biology. 2008;9(8):628-38. https://doi.org/10.1038/nrm2455
  29. Toth BI, Dobrosi N, Dajnoki A, Czifra G, Olah A, Szollosi AG, Juhasz I, Sugawara K, Paus R, Biro T. Endocannabinoids modulate human epidermal keratinocyte proliferation and survival via the sequential engagement of cannabinoid receptor-1 and transient receptor potential vanilloid-1. J Invest Derma. 2011;131(5):1095-104.
  30. Kupczyk P, Reich A, Szepietowski JC. Cannabinoid system in the skin - a possible target for future therapies in dermatology. Exp Derma. 2009;18(8):669-79. https://doi.org/10.1111/j.1600-0625.2009.00923.x
  31. Salzet M. Invertebrate molecular neuroimmune processes Brain Res Reviews. 2000;34(1-2):69-79. https://doi.org/10.1016/S0165-0173(00)00041-2
  32. Yang H, Zhou J, Lehmann C. GPR55-a putative "type 3" cannabinoid receptor in inflammation. J Basic Clin Physiol Pharmacol. 2016;27(3):297-302. https://doi.org/10.1515/jbcpp-2015-0080
  33. Kim HJ, Kim B, Park BM, Jeon JE, Lee SH, Mann S, Ahn SK, Hong SP, Jeong SK. Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone-induced atopic dermatitis model. Inter J Derma. 2015;54(10):e401-8. https://doi.org/10.1111/ijd.12841
  34. Nam G, Jeong SK, Park BM, Lee SH, Kim HJ, Hong SP, Kim BJ, Kim BW. Selective cannabinoid receptor-1 agonists regulate mast cell activation in an oxazolone-induced atopic dermatitis model. Ann Dermatol. 2016;28(1):22-9. https://doi.org/10.5021/ad.2016.28.1.22
  35. Gaffal E, Cron M, Glodde N, Tuting T. Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors. Allergy. 2013;68(8):994-1000.
  36. Haruna T, Soga M, Morioka Y, Imura K, Furue Y, Yamamoto M, Hayakawa J, Deguchi M, Arimura A, Yasui K. The inhibitory effect of S-777469, a cannabinoid type 2 receptor agonist, on skin inflammation in mice. Pharmacology. 2017;99(5-6):259-67. https://doi.org/10.1159/000455916
  37. Cantarella G, Scollo M, Lempereur L, Saccani-Jotti J, Basile F, Bernardini R. Endocannabinoids inhibit release of nerve growth factor by inflammation-activated mast cells. Biochemical Pharmacology. 2011;82(4):380-8. https://doi.org/10.1016/j.bcp.2011.05.004
  38. Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its residential flora. Int J Cosmet Sci. 2006;28(5):359-70. https://doi.org/10.1111/j.1467-2494.2006.00344.x
  39. Kim HJ, Shin JU, Lee KH. Atopic dermatitis and skin barrier dysfunction. Allergy Asthma Respir Dis. 2013;1(1):20-8. https://doi.org/10.4168/aard.2013.1.1.20
  40. Choi EH, Yoon NY. Pathogenesis of atopic dermatitis. J Korean Med Assoc 2014;57(3):218-225. https://doi.org/10.5124/jkma.2014.57.3.218
  41. Kim HJ, Lee SH. The effect of skin surface on epidermal permeability barrier. J Skin Barrier Res. 2008;10(1):44-55.
  42. Chen JQ, Liang BH, Li HP, Mo ZY, Zhu HL. Roles of kallikrein-related peptidase in epidermal barrier function and related skin diseases. Int J Dermatol Venereol. 2019;2(3):150-5. https://doi.org/10.1097/JD9.0000000000000036
  43. Yamamoto M, Miyai M, Matsumoto Y, Tsuboi R, Hibino T. Kallikrein-related peptidase-7 regulates caspase-14 maturation during keratinocyte terminal differentiation by generating an intermediate form. J Biol Chem. 2012;287(39):32825-32834. https://doi.org/10.1074/jbc.M112.357467
  44. Buerger C, Shirsath N, Lang V, Berard A, Diehl S, Kaufmann R, Boehncke WH, Wolf P. Inflammation dependent mTORC1 signaling interferes with the switch from keratinocyte proliferation to differentiation. PLoS One. 2017; 12(7): e0180853. https://doi.org/10.1371/journal.pone.0180853
  45. Yang F, Tanaka M, Wataya-Kaneda M, Yang L, Nakamura A, Matsumoto S, Attia M, Murota H, Katayama I. Topical application of rapamycin ointment ameliorates Dermatophagoides farinabody extract-induced atopic dermatitis in NC/Nga mice. Exp Dermatol. 2014;23(8):568-72. https://doi.org/10.1111/exd.12463
  46. Trautmann A, Altznauer F, Akdis M, Simon HU, Blaser K, Akdis CA, Disch R, Brocker EB. The differential fate of cadherins during T-cell-induced keratinocyte apoptosis leads to spongiosis in eczematous dermatitis. J Invest Dermatol. 2001;117(4):927-34. https://doi.org/10.1046/j.0022-202x.2001.01474.x
  47. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology. 2006;7(2):131-42. https://doi.org/10.1038/nrm1835
  48. Ji H, Li XK. Oxidative stress in atopic dermatitis. Oxid Med Cell Longev. 2016;2016:2721469.
  49. Cheung PFY, Wong CK, Ho AWY, Hu S, Chen DP, Lam CWK. Activation of human eosinophils and epidermal keratinocytes by -2 cytokine IL-31: implication for the immunopathogenesis of atopic dermatitis. Int Immun. 2010;22(6):453-67.
  50. Arbabi S, Maier RV. Mitogen-activated protein kinases. Critical Care Med. 2002;30(1):s74-49. https://doi.org/10.1097/00003246-200201001-00010