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1 |  INTRODUCTION

Fifth-generation (5G) wireless communication technologies 
that support cellular networks have currently attracted consider-
able interest from various agencies and industries worldwide [1]. 
These 5G networks employ the frequency spectrum in the milli-
meter-wave (MMW) region such as the 28-GHz band [2] to ful-
fill the key 5G features and requirements defined in International 
Mobile Telecommunications-2020 (IMT-2020) [3], which 
are usually classified into three service categories: enhanced 
Mobile Broadband [4], massive Machine Type Communication 
[5], and Ultra-Reliable Low-Latency Communications [6]. In 

fact, the MMW frequency above 24 GHz is formally defined 
in the 3rd Generation Partnership Project (3GPP) specification 
as the new 5G operating spectrum band of “Frequency Range 
2” [7]. Therefore, compliance assessment of 5G MMW mobile 
base stations [8] is now considered an important factor to en-
sure the public is safe from radiation exposure. The biological 
and health risks caused by electromagnetic field (EMF) expo-
sure are assessed mainly based on in vivo and in vitro experi-
ments. In particular, in vitro (cellular) studies conducted on cell 
cultures can provide the biological effects of exposures at rel-
atively low cost and increase the reliability of in vivo (animal) 
studies that should be time intensive and consider ethical issues 
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Abstract
The objective of this study was to implement an in vitro exposure system for 28 GHz 
to investigate the biological effects of fifth-generation (5G) communication. A signal 
source of 28 GHz for 5G millimeter-wave (MMW) deployment was developed, fol-
lowed by a variable attenuator for antenna input power control. A power amplifier 
was also customized to ensure a maximum output power of 10 W for high-power 28-
GHz exposure. A 3-dB uniformity over the 80 mm × 80 mm area that corresponds to 
four Petri dishes of three-dimensional cell cultures can be obtained using a custom-
ized choke-ring-type antenna. An infrared camera is employed for temperature regu-
lation during exposure by adjusting the airflow cooling rate via real-time feedback to 
the incubator. The reported measurement results confirm that the input power con-
trol, uniformity, and temperature regulation for 28-GHz exposure were successfully 
accomplished, indicating the possibility of a wide application of the implemented in 
vitro exposure system in the fields of various MMW dose-response studies.

K E Y W O R D S

3D culture, exposure system, in vitro, integration, millimeter-wave, uniformity

www.wileyonlinelibrary.com/journal/etrij
mailto:
https://orcid.org/0000-0002-7804-3241
https://orcid.org/0000-0002-8082-4194
https://orcid.org/0000-0001-8109-2055
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:lys009@etri.re.kr


838 |   LEE Et aL.

[9]. EMF from 5G sources in the MMW range will only reach 
the superficial tissues owing to the small penetration depth of 
the radiation. The adverse health effects of these MMW-range 
EMFs will primarily be thermal with regard to the skin and eyes 
[10,11]. Various types of in vitro MMW exposure setups have 
been proposed experimentally [12,13] and numerically [14–16] 
to study the potential biological effects of MMW frequencies. 
However, little information regarding in vitro MMW setups 
based on the 5G spectrum has been published, as there are few 
natural sources of 5G MMW radiation because of the severe 
propagation losses associated with them [17].

This paper presents an implementation of an in vitro ex-
posure system for 28 GHz, which is one of the main MMW 
frequency bands for 5G communications [2] in this context. 
Compared to other reported in vitro MMW exposure systems 
[12–16], little effort has been made to practically realize an in 
vitro experiment system for 5G MMW exposure. The entire 
system is based on field uniformity [18] to provide adequate 
exposure area for three-dimensional (3D) cell culture [19,20], 
which is more efficient in dealing with a shallow skin depth of 
approximately 1 mm at MMW frequencies [10]. A significant 
feature of the implemented system is its “all-in-one” charac-
teristics, that is, every system component is incorporated into 
a single unit for a more accurate exposure experiment. A sig-
nal source with a 28-GHz frequency and a power amplifier 
are customized for high-power exposure up to a power density 
(PD) level of 500 W/m2, which is several tens of times higher 
than the safety limit of 10 W/m2 [21,22]. An infrared (IR) cam-
era is also employed to record cell temperatures and maintain 
an optimal target temperature during exposures via real-time 
feedback to the incubator by adjusting the airflow cooling rate. 
Measurement results are also reported to verify the signal level 
control, uniformity, and temperature regulation.

2 |  MATERIALS AND METHODS

2.1 | In vitro exposure system design

The system requirements of an in vitro 28-GHz exposure sys-
tem based on simulations [18] are summarized in Table 1. A 
plane wave impedance of 377 Ω should be realized for each 
vertical distance d less than the distance of the far-field region 
to obtain good uniformity and reduce the chamber size. The 
3-dB uniformity area (ie, the difference between the maximum 
and minimum values is 3 dB) of 80 mm × 80 mm stems from 
the four (2 × 2) 35 mm Petri dishes to minimize polarization 
effects. The center-to-center distance between the dishes is 
39  mm. The system should support high-power MMW ex-
posures of up to 500 W/m2, which corresponds to a PD level 
that is 50 times higher than the permissible reference level for 
the public as per International Commission on Non-Ionizing 
Radiation Protection (ICNIRP) guidelines [21,22]. Hence, the 

input power level should also be adjustable for various dose-
response data for this purpose. Temperature regulation and 
environmental control for stable long-term exposure are also 
required. All detailed optimizations and practical constructions, 
however, were carried out during the actual measurement and 
implementation of the system components.

A schematic diagram of the proposed design for a 28-
GHz exposure chamber is illustrated in Figure 1. The overall 
chamber size of 1000  mm  ×  1000  mm  ×  1000  mm is the 
result of additional space for the system components inside 
the chamber such as a waveguide probe, a positioner, and ab-
sorbers, as discussed below in detail.

2.2 | System implementation

2.2.1 | Exposure chamber

The chamber for in vitro 28-GHz experiments based on the 
proposed design is illustrated in Figure 2A. The MMW ex-
posure chamber is embedded in an outer incubator to deliver 
a constant environment (temperature, relative humidity, and 

T A B L E  1  System requirements of an in vitro 28 GHz exposure 
system

Parameter Specification

Wave impedance 377 Ω

Maximum MMW exposure up to ~500 W/m2

3-dB uniformity area 80 × 80 mm2

Chamber size 40 × 40 × 40 cm3

Additional req. Temperature regulation etc.

F I G U R E  1  Schematic diagram of design for a 28 GHz exposure 
chamber
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CO2) for cell cultures, as shown in Figure 2B, constituting an 
integrated “all-in-one” in vitro MMW exposure system for 
successful experimentation in a controlled environment. The 
dimensions of the entire integrated system in Figure 2B are 
approximately 1600 mm × 1600 mm × 1958 mm.

A MMW 28-GHz continuous wave signal is generated 
by a signal source and then amplified by a power amplifier. 
Both the signal source and power amplifier are specifically 
customized for a 28-GHz in vitro exposure system. A sig-
nal source includes an HMC985ALP4KE variable attenuator 
(Analog Devices, Inc.) for signal power control. A power am-
plifier was fabricated using four gallium nitride high-elec-
tron-mobility transistors with a waveguide power combiner 
to improve the amplifier efficiency and achieve a maxi-
mum gain of 40 dB. The maximum output power of 10 W 
is achieved for a high PD of approximately 500 W/m2 inside 
the exposure chamber. The antenna input power can also be 
controlled in steps of 0.1 W based on the measurement data 
of a variable attenuator voltage and amplifier output power, 
as discussed later.

A choke-ring-type antenna for 28-GHz uniformity was 
designed based on its broadbeam properties to obtain the 
wave impedance characteristics of a plane wave (377 Ω) in 
the field region shorter than the Rayleigh distance of 2D2/λ 
(D is the largest dimension of the antenna), as shown in 
Table 1.

The far-field simulation characteristics are summarized in 
Table 2. The symmetric broadbeam performance can be seen 
for all three principal planes. The desired 3-dB uniformity 
area of 80 mm × 80 mm, which corresponds to a symmetrical 
2 × 2 deployment of four Petri dishes to suppress polarization 
effects [18], is fully accomplished over each vertical distance 
d as a result. Note that this 3-dB uniformity stems from the 
reasonable distributions of the PD over cultured cells for a 
practical experiment [13]. A high cross-polarization discrim-
ination (XPD) of at least 20  dB is also obtained to ensure 
single polarization during exposures. The simulated wave 
impedance and uniformity results are listed in Table 3. Plane 
wave properties along shorter vertical distances and good 
uniformity performances are clearly seen. An amplifier out-
put power is injected into this choke-ring type antenna for 
MMW uniformity inside the chamber. Note that an antenna 
is installed on the ceiling of the chamber for the direct MMW 
illumination into a cell layer for 3D culture experiments, as 
illustrated in Figure 3A.

An FLIR A325sc IR camera (FLIR Systems, Inc.) is 
also mounted on the ceiling of the chamber, as shown in 
Figure 3B, for temperature regulation during exposure. The 
measured camera temperatures are used as a target value for 
temperature regulation by adjusting the airflow cooling rate 
via real-time feedback to the incubator. It should be noted 
that most commercial incubators used for practical cell cul-
ture experiments do not contain an active air-cooling system 
[23,24] to prevent the temperature rise caused by MMW ex-
posure [14,25].

A WR-28 waveguide probe (NSI-MI Technologies) 
placed at the bottom of the exposure chamber is used for uni-
formity measurements. An LTC5596 power detector (Analog 
Devices) is also connected at the output port of the cham-
ber after a probe and measures the MMW signal power for 
the antenna input power control. An MA-60-05(10)-SS XY 
positioner (Hanguk Robot Ltd.) is mounted at the bottom 
of the chamber for horizontal probe positioning during the 
uniformity measurements. The vertical position of the probe 
can be manually adjusted by tightening or loosening a tuning 
screw. The practical uniformity inside the chamber for actual 

F I G U R E  2  Implemented in vitro 28 GHz exposure system: (A) 
exposure chamber embedded in the incubator and (B) front view of the 
overall system

T A B L E  2  Simulated far-field characteristics of a choke-ring type 
antenna

Parameter

Principal planes

E-plane H-plane 45°-plane

Gain (dB) 9.8 9.8 9.8

Beamwidth (°) 67.6 66.3 67.2

XPD 38.2 39.4 20.3

T A B L E  3  Simulated wave impedance and uniformity 
characteristics of a choke-ring type antenna in terms of vertical 
distance d (see Figure 1)

Vertical distance d 
(mm)

Wave impedance  
(Ω)

Uniformity 
(dB)

100 377.17 3.46

120 374.89 2.27

140 375.69 1.54

160 376.06 1.13

180 375.21 0.82

200 378.62 0.62
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exposure over the target area is verified by the insertion loss 
(S21) measurements along every vertical distance.

Finally, a KER-EPP10 MMW pyramidal absorber (Korea 
Electromagnetic Research) suitable for high humidity and 
temperature conditions is employed for all the internal walls 
of the exposure chamber. A holder tray is made of Rohacell 
foam (Evonik) with a dielectric constant (εr) of nearly one to 
suppress additional field disturbances. The holder tray can be 
positioned at different vertical heights with respect to the an-
tenna aperture from 100 mm to 300 mm using height-control 
blocks of 20 mm thickness (that is, in 20 mm steps).

2.2.2 | Control software

The main control software (SW) was developed in C++ and 
installed on a personal computer (PC) to allow the quick 
and easy setup of an experimental condition. A graphical 
user interface (GUI) enables the easy setup and configura-
tion of experimental conditions (input power, temperature, 
warning, and so on) before an exposure is started. All 28-
GHz source controls (turning the signal on or off, changing 
the input power level, and so on) can be performed via the 
main SW GUI. The temperature averaged area for the IR 
camera (usually at the cell surface) can be defined as well. 

The signal power and temperature profiles are monitored and 
displayed in real-time, respectively. All measured data are 
stored at designated intervals in an American Standard Code 
for Information Interchange (ASCII) file format for further 
post-processing. A log history message enables the accurate 
diagnosis of system malfunctions.

Figure 4 shows the entire control flow of the in vitro 28-
GHz exposure system. It can be observed that all controls 
are carried out and executed by the main SW installed on 
the PC. An AIO3320A AD/DA board (JS Automation Corp.) 
is mounted on the PC for the control signals of the 28-GHz 
source operations, that is, to turn on a signal generator and an 
amplifier with the specified sequence of the protection relay 
and to adjust the variable attenuator voltage for the antenna 
input power control.

3 |  RESULTS AND DISCUSSION

3.1 | MMW uniformity characteristic

The antenna input power, that is, the amplifier output power 
injected into the antenna input port, was measured using an 
N9030B PXA spectrum analyzer (Keysight Technologies) 
with a 28WL  +  CK-40_CU waveguide directional cou-
pler (A-INFO Inc.) as varying the attenuator voltage. A 
28WHPL125 waveguide high-power load (A-INFO Inc.) was 
employed to terminate the waveguide coupler. Figure 5 shows 
the measurement result of an antenna input power in terms of 
the variable attenuator voltage. It can be observed that a maxi-
mum antenna input power of 10  W is ensured. Small local 
discontinuities in the overall smooth profile are due to the ac-
tual attenuation characteristic of a variable attenuator as the 
control voltage changes. These voltage values were extracted 
from the measurement data in Figure 5 to enable the antenna 
input power to be controlled through the SW GUI. In practice, 
the antenna input power control, in intervals of 0.1 W, was 
established in the main SW based on this procedure.

The uniformity was verified by S21 measurements between 
the choke-ring type antenna and waveguide probe inside 
the exposure chamber. An 8722ES vector network analyzer 
(VNA) (Keysight Technologies) was used for measurements 
and a full 2-port calibration was performed. The VNA was 
controlled at the PC through a general-purpose interface bus 
interface and synchronized with an XY positioner for auto-
matic scanning and data acquisition. The actual S21 measure-
ments were conducted on the exposure area over all possible 
vertical distances d from 120 mm to 300 mm at 20 mm in-
tervals (that is, the interval of the holder tray positioning). A 
measurement at a distance of 100 mm cannot be carried out 
owing to the limits of the hardware, that is, the probe cannot 
be vertically positioned at such a short distance from the an-
tenna aperture.

F I G U R E  3  (A) Choke-ring type antenna and (B) IR camera 
installed on the ceiling of the exposure chamber

F I G U R E  4  Schematic of the control flow of the in vitro 28 GHz 
exposure system
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Figure 6 depicts the measured S21 distribution normalized 
with respect to the average value at a vertical distance d of 
180  mm. It can be observed that a uniformity of approxi-
mately 3 dB (that is, the difference between the maximum 
and minimum values is 3 dB) is obtained along the x- and 
y-axes (E- and H-planes), respectively, over the target area 
of 80 mm × 80 mm (see also Figure 1). Note that the smaller 
values at the diagonal vertices rarely affect the practical ex-
posure area occupied by circular Petri dishes during an ex-
periment. This 3-dB uniformity can be reasonably compared 
with the previously reported in vitro exposure setup [13].

The most fundamental parameter of interest for in vitro 
MMW exposure should be PD, because safety limits in the 
international guidelines are specified in terms of the PD value 
at MMW frequencies [21,22]. Note that one of the essential 
requirements for an in vitro exposure system is the ability 
to provide exposure levels according to the safety limits so 
that potential electromagnetic field (EMF) health effects may 
be carefully studied [26]. Although various coupling effects 
should be considered to find a precise PD value at the planar 
near-field region, a reasonable approximation of the near-
field PD can be found based on far-field concepts, especially 
for broadbeam antennas [27]. Hence, the PD of S inside the 
chamber can be written as [28]

where Prec,p = Pin
|
|
S21

|
|

2 is the power received by the wave-
guide probe, Pin is the antenna input power, S21 is the measured 
insertion loss in the linear scale, Ae,p = �

2∕Gp4� is the probe 
effective aperture, λ is the wavelength (at 28 GHz), and Gp is a 
probe gain of 6 dB, respectively. Table 4 lists the PD and uni-
formity results for every vertical distance d when the antenna 

input power Pin is 1 W. Note that these PD values are obtained 
when the probe is polarization matched and aligned with an 
antenna on the main axis [12,16]. The degradation of unifor-
mity compared with the simulations in Table 3 is due to inter-
nal electromagnetic reflections caused by the different system 
components (probes, positioner, and so on), accuracy of the po-
sitioning system employed for the S21 measurements inside the 
exposure chamber, and the approximation used in (1) to deter-
mine the near-field PD. Nevertheless, it can be observed that a 
uniformity of approximately 3 dB is ensured over every vertical 
distance d. In addition, because the PD of 45.83 W/m2 can be 
obtained at a distance of 100 mm based on polynomial extrapo-
lation when the input power is 1 W, high-power exposures of up 
to 458.3 W/m2 are realized using the maximum input power of 
10 W, which is reasonably close to the desired value of 500 W/
m2 in Table  1. The effective uniformity required for in vitro 
MMW exposures can be much smaller than the target area of 
80 mm × 80 mm considering an insert with a 10 mm diameter 
inside a Petri dish for a 3D cell culture (see also Figure 7).

3.2 | Temperature regulation

Four 35 mm Petri dishes with inserts for a 3D cell culture, 
as shown in Figure 7, were placed on the holder tray inside 
the exposure chamber to verify the temperature regulation 
during exposure. Saline solutions and Micropig Franz cell 
membranes (Medi Kinetics Co., Ltd.) were used as a prac-
tical model for the 3D cell culture experiments, which are 
usually composed of a culture medium and a reconstructed 
cell model [20]. The center-to-center distance between the 
dishes was 39 mm, in accordance with the exposure area [18]. 
Measurement areas were designated at all four cell surfaces 
in the inserts via the main SW. The IR camera recorded the 
cell temperatures (that is, the temperatures on the designated 
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F I G U R E  5  Measured antenna input power in terms of a variable 
attenuator voltage
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F I G U R E  6  Normalized S21 distribution at a vertical distance d of 
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areas) at 10  mseconds intervals, and the results were aver-
aged for use as inputs to an incubator for air cooling (that is, 
real-time feedback). The target temperature for regulation was 
designated to be 37°C to provide an optimal thermal condi-
tion for cell cultures [13]. Note that the temperature cycle of 
the order of several hundred seconds is due to the time con-
stant of a cooling system (that is, the required cooling time). 
The temperature profiles measured by the IR camera are pre-
sented in Figure 8 as a function of time at 160 mm when the 
antenna input power Pin is 0.5 W (that is, a PD of 10 W/m2 
equal to the safety limit [21,22]). Average cell temperatures 
maintained around the target value of 37°C despite the tem-
perature rise caused by electromagnetic energy absorption due 
to MMW exposures [14,15]. The temperature profile across 
a 160-mm distance with a PD of approximately 200  W/m2 
is also shown in Figure 9. Despite a rapid rise in temperature 
owing to the high-power exposure, stable temperatures in the 
vicinity of 37°C can still be observed for a long period. Note 
that the temperature cycle that is shorter than that of the PD 
of 10 W/m2 (Figure 8) is due to the larger amount of MMW 
absorption. These results indicate that reasonable tempera-
ture regulation can be accomplished based on the real-time 
feedback of the IR camera temperatures. It should be noted 
that this is an important feature of the implemented in vitro 
28-GHz exposure system, in contrast to other reported MMW 
in vitro incubator setups [13,25], which are limited in use to 
low power exposures or require low incubation temperatures 
below 30°C to support high-power in vitro experiments due 
to cell temperature rises caused by MMW absorption. In con-
trast, the proposed system enables exposure experiments with 
various MMW PD levels because of its effective temperature 
regulation. Although the maintained average temperatures in 
Figures 8 and 9 are slightly higher than the optimal value of 
37°C owing to the response delay time of the airflow cooling 
for system protection, this can be easily compensated for by 
adjusting the target temperature for the regulation, if required.

T A B L E  4  PD and uniformity results for every vertical distance d 
(Pin is 1 W)

Vertical distance d (mm) PD (W/m2) Uniformity (dB)

120 34.13 4.69

140 25.01 3.30

160 19.15 2.77

180 15.78 2.99

200 11.75 1.87

220 10.55 2.75

240 9.53 3.09

260 7.71 1.19

280 7.54 2.36

300 5.89 2.77

F I G U R E  7  Four Petri dishes with inserts for 3D cell culture

F I G U R E  8  Temperature profile of the IR camera at a vertical 
distance d of 160 mm when antenna input power Pin is 0.5 W
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F I G U R E  9  Temperature profile of the IR camera at a vertical 
distance d of 160 mm when antenna input power Pin is 10 W
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4 |  CONCLUSIONS

An in vitro 28-GHz exposure system based on field uni-
formity and a 3D cell culture was implemented. The 28-
GHz signal source and power amplifier, customized for an 
exposure system, can produce a maximum output power of 
10  W for high-power exposures. The antenna input power 
can be controlled using the measured value of the attenua-
tor voltage and amplifier output power. The 3-dB uniform-
ity generated by the designed choke-ring type antenna was 
verified by the S21 measurement over the target exposure 
area of 80 mm × 80 mm, which corresponds to four sym-
metrical Petri dishes to minimize the polarization effects for 
every vertical distance. The PD levels for practical in vitro 
experiments can also be controlled by adjusting the antenna 
input power as well as the vertical distance of the holder tray 
made of Rohacell foam with a εr of nearly one. The tem-
perature regulation was verified using average cell tempera-
tures measured by the IR camera. It was shown that the cell 
temperatures were successfully maintained in the vicinity of 
the optimal target value of 37°C under different 28-GHz ex-
posure conditions (that is, at low and high PDs). This “all-
in-one” exposure system enables more accurate and reliable 
in vitro 28-GHz experiments for investigating the potential 
health effects related to 5G MMW frequencies. Various in 
vitro 28-GHz experiments with high-power and long-term 
exposures will be carried out using the implemented in vitro 
integrated exposure system in future.
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