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1 |  INTRODUCTION

The task of differentiating outlier data points from normal 
points given a particular definition of anomalous behavior 
is referred to as anomaly or outlier detection [1]. Outlier 
detection methods are useful in numerous applications, 
including the detection of defective mechanical parts [2], 
intrusions in wireless sensor networks [3], credit card fraud 
[4], and gene separation [5]. Outlier detection techniques 
have evolved over time to form both supervised and unsu-
pervised techniques. For most outlier datasets, ground truth 
data are lacking; hence, most outlier detection methods are 
unsupervised [6]. However, in the unsupervised category, 

there have been reports of methods producing too many 
false positives and negatives [7]. To improve the detection 
accuracy of unsupervised methods, the use of ensembles 
or groups of learners and detectors to solve the outlier 
mining problem has become a norm [8‒10]. Therefore, 
many novel outlier ensemble methods have been developed 
[10‒13]. An ensemble is a collection of trained classifier 
models whose predictions are combined to reach a final 
decision [14]. Ensemble learning is a machine learning 
concept in which multiple learners are trained to solve the 
same problem. In contrast to ordinary machine learning ap-
proaches, which attempt to learn a single hypothesis from 
training data, ensemble methods attempt to construct a set 
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of hypotheses and combine them for detection [15]. An en-
semble contains a number of learners, which are referred to 
as base learners. The generalization ability of an ensemble 
is typically much stronger than that of its individual base 
learners. In essence, ensemble learning is advantageous be-
cause it is able to boost weak learners, which are slightly 
better than random guesses, to create strong learners that 
can make more accurate predictions [16].

Problem statement: An ideal outlier detection ensem-
ble should consider the strengths of individual base learners 
while carefully combining their outputs to create a strong 
learner to achieve unbiased overall detection accuracy with 
minimal variance. Existing outlier detection ensembles 
utilize either parallel and/or sequential combination struc-
tures to fuse multiple detectors (weak base learners) in an 
attempt to improve overall detection accuracy by deriving a 
combined result (majority vote) from the detectors. Parallel 
combination structures are designed with the goal of reduc-
ing variance while serial combination structures are designed 
with the goal of reducing bias [17]. However, trusting the 
results from all weak learners may deteriorate the overall per-
formance of an ensemble because some learners can provide 
inaccurate results depending on data types and the underlying 
rules of a learner, particularly in the context of outliers with 
a lack of ground truth data. Outlier detection ensembles that 
mark safe instances as anomalous or that mark anomalous 
instances as safe can make systems unsafe, untrustworthy, or 
redundant. In certain applications, such as medical diagno-
sis, misclassifications can have catastrophic and irreparable 
consequences [18]. Therefore, it is necessary to study which 
detectors should be used as base learners, how they should 
be combined, and which types of data they are suitable for. 
To address these problems, this paper presents an adaptive 
boosting framework for heterogeneous ensembles for outlier 
detection (ADAHO). The advantage of ADAHO lies in its 
ability to integrate various high-performance base detectors 
by utilizing a hybrid structure to minimize bias and variance 
while improving overall detection accuracy. The main contri-
butions of this work can be summarized as follows:

1. ADAHO selects high-performance or optimal hetero-
geneous base learners by assessing their capabilities in 
their local domains or areas of expertise. This is because 
every outlier detection technique performs best within a 
specific domain within the entire problem space [19].

2. ADAHO adaptively boosts the outputs of preceding base 
learners during the first phase of training and carefully 
combines high-performance base learners in the second 
phase to generate more accurate predictions compared to 
simply averaging the outcomes of all base learners.

3. ADAHO is able to fuse heterogeneous detectors that pro-
duce different types of outlier outputs at different scales 
into a unified function for identifying outliers.

The remainder of the paper is organized as follows. A 
literature review and background information on existing 
detection ensembles are presented in Sections  2 and 3, re-
spectively. Our design methodology is presented in Section 4. 
Experiments and empirical results are discussed in Sections 5 
and 6, respectively. Finally, in Section  7, conclusions are 
drawn and directions for future research are discussed.

2 |  LITERATURE REVIEW

2.1 | Outlier detection

Outlier detection refers to the task of identifying anomalous 
patterns in a given dataset according to a particular definition 
of anomalous behavior [1]. Outlier detection methods are 
specific solutions to outlier detection problems. The output 
of an outlier detection method could be a labeled pattern. For 
example, outlier labels or normal labels, or scores assigned 
based on the degree to which a pattern is considered an out-
lier. Outliers are detected by analyzing events, where each 
event is designated by a data instance. Each data instance has 
features (ie, attributes) that describe it [3]. A data instance 
with a single feature is a univariate instance and a data in-
stance with multiple features is a multivariate instance [1]. 
Features are crucial for distinguishing normal behavior from 
anomalous behavior. An outlier was defined by Hawkins as 
an observation that deviates far enough from other obser-
vations to arouse suspicion that it was generated by a dif-
ferent mechanism [20]. In most literature, the authors have 
described outliers as observations that appear to be inconsist-
ent with the remainder of dataset, which is the main problem 
associated with handling outliers. Outlier detection meth-
ods attempt to solve this problem using various approaches, 
such as statistical and probabilistic knowledge, distance and 
similarity-dissimilarity functions, metrics for accuracy when 
dealing with labeled data, association rules, properties of pat-
terns, and other domain features.

2.2 | Key aspects of the outlier 
detection problem

In outlier detection, the fundamental problem lies in discern-
ing the unknown data space. A straightforward approach to 
detecting outliers is to find unusual points by computing a 
measure of normality or similarity to their neighboring points. 
However, several factors make this task very challenging. 
For example, Chandola's survey described seven factors [1]. 
(a) Defining a normal region (ie, one that covers every pos-
sible normal behavior) is very difficult. (b) Normal regions 
continue shifting in many cases and an existing understand-
ing of a normal region may not hold true in the future. (c) The 
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margin between a normal region and outlier region is almost 
always uncertain; this means that an outlying point that lies 
near the margin could be a normal point or vice versa. (d) The 
exact definition of an outlier differs for different application 
areas. (e) Data classes or labels for training or testing are not 
always available. (f) In cases where outliers are generated by 
malicious acts, malicious agents can adjust themselves to ap-
pear normal, thereby making the task of identifying normal 
behavior much more difficult. (g) Noise is present in most 
data, and noise can mimic outliers, making it difficult to sep-
arate and eliminate real outliers.

In response to these challenges, outlier detection tech-
niques have attempted to simplify the problem by adding var-
ious types of information, including the definition or nature 
of data and the types of outliers to be detected. Therefore, the 
application area dictates the methods used to solve the out-
lier detection problem; this means that there are a number of 
different methods used in various areas, such as data mining, 
statistics, and machine learning. For example, by narrow-
ing down Hawkins's concept [20], two major outlier detec-
tion techniques can be derived: distance-based techniques 
and density-based techniques. Distance-based techniques 
find data points that lie far from their nearest neighbors and 
density-based techniques find data points that reside in low-
er-density regions compared to their nearest neighbors. Some 
researchers have also studied other types of outlier detection 
algorithms, such as supervised and unsupervised learning 
algorithms. Supervised learning algorithms detect outliers 
using labeled data; this means that records are classified as 
either “normal” or “outlier.” Unsupervised learning algo-
rithms use unlabeled data; thus, the outliers (and inliers) are 
unknown [21].

2.3 | Domain significance and data 
associations

Knowing the associations among data instances is very sig-
nificant for the outlier detection problem. Therefore, outlier 
detection methods can be classified based on their use of 
global data associations, meaning they generate decisions 
using all data points [10], or local domains, meaning deci-
sions are made based on a few locally selected points [22]. 
In both cases, applications are domain specific. For example, 
in high-dimensional data spaces, where outliers lie far from 
the rest of the data, global associations among all data points 
are very useful [11]. However, such global associations may 
underestimate the probability of other outliers lying in local 
domains [23]. Furthermore, drawing the conclusion that a 
given data point picked from a random set of samples should 
lie in a similar region to all other data points could be an inac-
curate assumption. Based on this analysis, methods such as 
the local outlier probability (LoOP) [24], local outlier factor 

(LOF) [25], and Gloss [23] have been developed. Until the 
development of recent solutions presented in [13] and [26], 
the significance of local data regions for classifier selection 
and fusion in outlier detection problems had rarely been con-
sidered. However, it is noteworthy that both of these works 
utilized homogeneous ensembles. In [13], methods for deter-
mining data locality and the regions of competence of base 
learners were mentioned based on either the k-nearest neigh-
bors (k-NN) algorithm or data clustering.

2.4 | Value of fusion

In many cases, the nature of data is very unpredictable and 
base learners can make mistakes for different training in-
stances. It is also the case that some base learners will excel 
at discerning certain subspaces while others may perform 
poorly in those subspaces [27], but the overall accuracy 
of the former learners may be worse than that of the lat-
ter. In other words, a base learner can have a domain of 
expertise in a local domain while performing poorly when 
considering the entire feature space. To take advantage of 
each learner's domain of expertise, it is crucial to fuse them 
to reduce the total error [28]. This strategy is preferable 
because it helps to overcome the deficiencies of individual 
detectors while improving overall detection accuracy. The 
authors of [16] proposed the concept of data locality, which 
was later improved in [29] to perform dynamic classifier 
selection in local spaces of training points. Techniques that 
dynamically select and fuse base classifiers have yielded 
better results compared to static techniques, such as those 
that simply take a vote based on all base classifier outputs. 
Voting with weights and voting without weights are the 
two most common methods for combining not only ho-
mogeneous, but also heterogeneous models [14]. Using an 
optimal Bayes concept to filter high-performance learners 
from low-performance learners informed dynamic clas-
sifier selection in [30]. This concept was extended into 
dynamic ensemble selection in [31], which introduced a 
second-layer fusion strategy using multiple base classifi-
ers. However, in [31], heterogeneous learner fusion was 
not considered. In [26], the authors asserted that by using 
multiple base learners, stability can be improved compared 
to using only the best learner. However, in [13], a single 
learner or combination of learners was adopted depending 
on which configuration yielded better results. The concept 
of a “crowd of experts” is more helpful for diffusing bi-
ases compared to a single learner [26]. Experimental re-
sults demonstrated that using dynamic ensemble selection 
or groups of learners is more stable as compared to the case 
when dynamic classifier selection is used [31]. In [26], ad-
ditional issues regarding ensemble formation were raised. 
First, existing fusion strategies are static or lack any learner 
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selection procedures, which reduces the value of fusion be-
cause individual base learners may not fully identify all 
outliers [32]. Second, the performance of a base learner has 
always been assessed based on an entire training dataset 
instead of focusing on the data domains related to a par-
ticular testing instance. When all data dimensions are taken 
into consideration, few outliers can be identified [26]. In 
most outlier datasets, the majority of the data are normal, 
meaning most outliers can be identified by looking at small 
subsets of features [33]. The concept of detector evaluation 
based on the locality of data instead of global evaluation, 
which was proposed in [26], is very important. A fusion 
strategy such as weighted averaging, which utilizes the 
Pearson correlations between learner outcomes and actual 
or simulated labels on all training data points [34], is de-
sirable. Additional techniques that support the concept of 
outlier mining from local data domains include those pro-
posed in [13,23,24]. Outlier detection using heterogeneous 
algorithms yields heterogeneous scores, which cannot be 
directly combined because different methods produce dif-
ferent outlier scales [33]. For example, k-NN yields scales 
that are smaller than those of the cumulative neighborhood 
technique. Different methods also yield different types of 
vectors, such as binary-valued or real-valued scores, im-
plying that score unifying processes are required for score 
fusion.

2.5 | Bias-variance tradeoff

Generalization errors in classification can be examined 
using the bias-variance tradeoff framework [12]. When 
labels are provided with data samples (ie, supervised 
learning), this tradeoff is elaborately defined as the quan-
tification of bias and variance. When labels are not pro-
vided, unsupervised methods are used; hence, data labels 
are treated as unknown entities. Outlier detection tech-
niques can be viewed as binary problems with inliers (ma-
jority class) and outliers (minority class) by converting 
detector outlier scores into class labels [10]. Additionally, 
within the same reference, the error of a base learner can 
be divided into two parts, namely the reducible error and 
the irreducible error caused by noise in the data. It is pos-
sible to minimize the reducible error to increase detector 
accuracy by considering two types of errors, namely er-
rors from squared bias and errors from variance. In an 
effort to reduce both types of errors, compromises (ie, 
tradeoffs) must be made between the two types. The dif-
ference between an expected output and actual unseen 
value over the training samples defines bias, whereas the 
difference between the outcome of a detector over a single 
training set and the expected outcome over the entire data 
space defines variance. A base learner with low bias is 

flexible for fitting data properly, but will fit every train-
ing set in a different way, resulting in high variance. In 
contrast, an inflexible base learner with less variance will 
yield significant bias. It is the objective of an outlier de-
tection ensemble to reduce the errors caused by both bias 
and variance to reduce the overall effects of generaliza-
tion errors.

The goal of this study was to improve accuracy as much 
as possible by reducing both bias and variance and improving 
the selective outlier ensemble approach by introducing the 
concept of heterogeneous base detectors into an ensemble. 
Our approach first identifies high-performance base learners 
based on their strengths in the domains in close proximity to 
their training cases (ie, local domains), then utilizes adaptive 
boosting, where incorrectly classified samples become inputs 
for subsequent base learners, leading to a final output based 
on a fusion function.

3 |  ENSEMBLE FORMATION

Ensemble formation involves three key steps [10]. The first 
is the creation step, in which a number of base learners are 
created. The second is the selection step, in which high-
performance learners are picked from the pool of created 
learners. The third is the fusion step, in which a fusion 
strategy is used to fuse base model outcomes to create a 
strong learner. Implementing a good fusion strategy during 
the third step is very critical because there is a potential 
threat of weak learners deteriorating the performance of 
other models in the ensemble, rather than improving their 
performance [11]. Some outlier ensemble formations are 
designed in parallel order, such as feature bagging [35] 
or dynamic combination of detector scores for outlier en-
sembles (DCSO) [26]. Some are designed with sequential 
ordering, such as SELECT [11]. Finally, some formations 
use hybrid ordering, such as BORE [36] and XGBOD [12]. 
For classification, ensemble methods include bagging [37], 
boosting [38], and stacking [39]. These ensemble meth-
ods can be biased toward some specific characteristics of 
a dataset because their training procedures utilize only a 
single base learner.

To introduce diversity and eliminate biases, different 
types of base learners can be introduced into an ensemble 
to form a heterogeneous ensemble. This allows different 
data characteristics to be learned by a diverse set of base 
learners. However, when all base learner outcomes are 
fused to generate a final result without considering how 
well each base learner performs, it can lead to poor over-
all results or generally weak algorithms [10,11] because 
poorly performing learners drag down scores of high-per-
formance learners (eg, when averaging is used as a fusion 
method based on the mean of all scores [40]). Furthermore, 
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when maximization is used as a fusion strategy, it can yield 
unstable results [9]. However, it is possible to use either 
the average of maximization results or the maximum of av-
erage results because these two-stage fusion methods can 
potentially improve an algorithm's overall performance and 
stability [26].

In an attempt to generate base learners sequentially, the 
SELECT [11] and CARE [10] algorithms were developed. 
These methods select high-performance base learners while 
disregarding low-performance base learners during fusion. 
SELECT produces a simulated label or ground truth by av-
eraging base learner outlier probabilities, each of which may 
have biases in different directions, then disregarding low-per-
formance base learners or selecting base learners to retain based 
on the weighted Pearson correlations between simulated labels 
and base learner outlier probabilities [11]. This technique yields 
promising results for temporal graphs and multi-dimensional 
data. Other approaches, such as the Full ensemble [33], Div-E 
[41], and ULARA [42], were not designed around the concept 
of local domain competency or bias variance reduction, unlike 
SELECT. In the Full ensemble, all base detector outcomes are 
used, even those with strong biases, which deteriorates the final 
detector. Although ULARA computes the relative weights of 
base detectors, it still includes those with strong biases. Div-E 
hand picks diverse base detectors, including those with strong 
biases, based on the concept of maximizing diversity, which 
generally reduces accuracy.

Additional fusion techniques, such as majority voting, 
weighted majority voting, summation, product, maximum, 
minimum, fuzzy integral, Dempster-Shafer, and decision 
templates [28], have also been proposed. For voting, the 
value with the most votes, highest mean ranking, or highest 
mean probability is selected [14]. For weighted voting, each 
base detector is assigned a coefficient or weight according 
to its performance. It is important to note that most fusion 
approaches utilize the entire data space for decision making 
by calculating an overall average of learner scores [26]. We 
refer to such approaches as (G) fusion techniques. Some of 
these techniques can be summarized as follows. (i) In global 
threshold summation (G_TS), all learner outputs below a cer-
tain threshold are discarded and the sum of the remaining 
learner outputs is calculated. (ii) In global maximization (G_
Max), the maximum outlier score over all base learners is cal-
culated. (iii) In global averaging (G_AVG), the average of the 
scores of all base learners is taken as the final outlier score. 
(iv) In the global average of maximums method (G_AoM), 
base learners are divided into groups and the maximum score 
for each subgroup is taken as that subgroup's score. The final 
score is obtained by calculating the average of all subgroup 
scores. (v) In the global maximum of averages method (G_
MoV), base learners are divided into groups and the aver-
age score for each subgroup is taken as the subgroup score. 
The final score is obtained by choosing the maximum value 

among all subgroup scores. (vi) In global weighted averaging 
(G_WA), a simulated training label or ground truth label is 
generated by calculating the average of all base learner out-
puts. Each base learner is then assigned a weight by calculat-
ing the Pearson correlation between its training output and 
the simulated label. After the weights are obtained, the final 
score is calculated as the average of the weights of all base 
learner scores.

The Pearson correlation in (1) measures the similarity be-
tween two vectors s and t (n denotes vector length), where s 
and t are the averages of the vectors.

4 |  METHODOLOGY

The proposed method utilizes the principles of prediction based 
on historical outcomes. Our research design uses experiments, 
derivations, and reasoning as tools for understanding a problem 
or behavior. In other words, we implemented an experimen-
tal research design. This design involves the manipulation of 
variables and predictions based on past observations and data 
analysis to identify outliers. This paper presents an adaptive 
boosting technique for outlier detection called ADAHO. This 
method combines a set of heterogeneous weak learners to ob-
tain an optimized composite model that provides more accurate 
and reliable predictions compared to using a single model. It 
uses weighted versions of a single training dataset instead of 
random subsampling or bootstrapping. Therefore, the training 
dataset does not need to be as large as that required by many 
other methods. Successive weak classifiers are trained using 
reweighted versions of the training data, where the weights de-
pend on the accuracy of the previous classifiers. Error rates are 
computed in the context of an instance's local neighbors, rather 
than a global training set. Testing instances focus on local do-
mains or regions within a training dataset. At every iteration, 
the training instances are weighted according to the misclassifi-
cations (errors) of previous classifiers. This allows weak learn-
ers to focus on patterns that were poorly classified by previous 
classifiers. The final result is a fusion of carefully selected re-
sults from individual learners. The main steps in the ADAHO 
algorithm are presented in Algorithm 1. Step 1: Different de-
tection algorithms (base detectors) are selected with unique 
measures to score individual vectors. Step 2: A subset of the 
detector results is selected using a selection strategy. Step 3: 
The selected results are fused using different fusion methods to 
create intermediate aggregate outcomes. Step 4: Subsets of the 
outcomes from Step 3 are selected. Step 5: The selected subset 
of outcomes is fused.

(1)𝜌 (s, t)=

∑n

i=1

�
si− t̄

� �
ti− s̄

�

�∑n

i=1

�
si− t̄

�2
�∑n

i=1

�
ti− s̄

�2

.
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4.1 | Base learners

Heterogeneous base classifiers are selected because ensemble 
methods are very effective when base classifiers of dissimilar 
types are used [10,43]. Based on the differences between classi-
fiers, the unique properties in data can be discovered or learned. 
When base learners of the same type (homogeneous) are used, 
the advantages of learner fusion are lost, unless different data 
subsamples, parameters, or features are used for training each 
classifier [27,43]. The proposed algorithm uses different base 
learners (heterogeneous) to construct a group of models to 
improve efficiency. Distance- and density-based methods 
are well-known unsupervised methods for outlier detection. 
Distance-based methods [44,45] attempt to identify global out-
liers that lie far from the rest of the data. Such methods typically 
use the k-nearest neighbors (kNN) algorithm to detect outliers. 
Density-based methods [25] attempt to find local outliers that 
lie in less dense regions compared to their kNN.

This paper focuses on unsupervised outlier detection. Such 
techniques assign scores to individual data points, facilitating 
the ranking of such points based on their probability of being 
outliers. Motivated by the critical importance of data locality 
and dynamic learner fusion in DCSO [13,26] and the concept 
of heterogeneous detector formations in SELECT [11], we 
adopted two distance-based algorithms to detect global outli-
ers and two density-based algorithms to detect local outliers. 

(a) The local distance-based outlier factor (LDOF) [45] cal-
culates the distance from a point to its kNN and compares 
that value to the average distances between nearest neighbors. 
(b) The traditional kNN algorithm uses the kNN distances of 
individual instances is used as outlier scores. (c) The LOF 
[25] calculates the local deviation of a given data point rela-
tive to its neighbors. (d) Finally, LoOP [46] is a local-densi-
ty-based outlier detection method that provides outlier scores 
in the range of [0,1].

Formally, given a dataset  of size d features, we divide 
the dataset into training and testing sets as Xtrain ∈

n×d to 
signify training data with n data points and Xtest ∈

m×d to 
signify test data with m points.

Next, a pool of heterogeneous base detectors 
B={b1,… , bR} is created by initializing the four weak 
learning algorithms (LDOF, kNN, LOF, and LoOP) using 
a variety of parameter settings for each. All base detectors 
are then trained and used to classify outliers in Xtrain. In 
this phase, an adaptive boosting technique is adopted to 
create a strong learner from the weak learners that were 
initialized. This technique samples a training set Xtrain from 
the initial dataset  according to a uniform distribution, 
meaning the initial weight distributions {W} are given 
a value of 1/N, where N  is the number of training data. 
These weight distributions are updated adaptively in each 
iteration based on prediction results. Correctly predicted 

F I G U R E  1  ADAHO information flow from leaner creation to outcome fusion. Colors represent different stages. WkLk are heterogeneous 
weak learners
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samples from weak learners receive low weights because 
they are considered to be easy samples. Difficult sam-
ples receive higher weights. In this manner, in the next 
iteration, the learners are able to focus on the difficult 
samples and attempt to provide better predictions. The 
weighted error �t (i) of each learner is then calculated, as 
shown in Algorithm 1, Step 1, (2). The weak learner with 
𝜀t >0.5 is discarded, as shown in Algorithm 1, Step 2. The 
learner with the lowest error is selected and its outputs 
are used for future fusion (Algorithm 1, step 3). In Step 4 
in Algorithm 1, every learner's error rate �n is estimated 
using (3) and a combination weight �t is calculated using 
(4) for every learner. The weighted coefficients of base 
learners are used to calculate the outputs. The greater a 
weight is, the more influence the corresponding learner 
has on the overall results. Therefore, over T iterations, the 
ensemble considers l weak learners with different com-
bination weights or weighted coefficients �t, as shown 
in Algorithm 1, Step 5. The results of the selected base 
learners form an outlier score matrix O

(
Xtrain

)
 as follows:

where bi (.) is the score vector from the rth base detector. Each 
base detector score br

(
Xtrain

)
 is normalized using the Z-norm 

function [9,43] as z=
(
br −�

)
∕�, where � is the mean and � 

is the standard deviation. Because LOF outputs normalized 
scores, its outcomes are not renormalized again in this step. 
This process is summarized in Figure 1 part A above.

4.2 | Establishing local domains using 
artificial labels (target)

ADAHO assesses the capability or competency of each base 
detector prior to fusion, but most outlier data have no actual 
labels or ground truth information. Therefore, O

(
Xtrain

)
 is uti-

lized to generate a simulated ground truth for Xtrain (called tar-
get) using two methods: by mean (denoted as ADAHO_Avg, 
averaging all scores, (7)) and by maximization (denoted as 
ADAHO_Max, obtaining a maximum score across all detec-
tors, (8)).

Both ADAHO_Max and ADAHO_Avg generate scores 
for training data, unlike G_AVG and G_MAX, which only 
generate scores for test data. An aggregation ∅ representing 
ADAHO_Avg or ADAHO_Max (ADAHO_Avg ∪ ADAHO_
Max) is then performed across all base detectors to yield the 

(6)O
(
Xtrain

)
=
[
b1

(
Xtrain

)
, … , br

(
Xtrain

)]
∈Dn×R,

(7)ADAHO_Avg=

∑n

i=1
bi

�
Xtrain

�

r
∈

n×1,

(8)ADAHO_Max=Max
{

b1

(
Xtrain

)
,… , br

(
Xtrain

)}
∈

n×1.

 
ALGORITHM 1 : ADAHO 
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target, which is used for initial detector selection. This process 
is denoted as

In terms of precision, avgkNN (see (10)) yields better 
results than kNN, so it is used here for selecting the local 
domain [2]. For a test instance X

(j)
test, the local domain �j is 

derived as a set of its k-nearest training objects based on 
Euclidean distance [26] as

where avgkNN(j) is the average of a set of a X(j)
test’s nearest neigh-

bours bound by the ensemble. In an attempt to tame the curse of 
dimensionality, this technique was adopted by borrowing from 
the concept of feature bagging [35]. This process is illustrated 
in Figure 1 part B.

4.3 | Optimal base detector selection

In addition to the first selection based on the error rate of 
each learner, a second selection is performed to filter out 
noisy outcomes by obtaining the local simulated label 
target�j for every test instance, where the values of target 
with respect to the local domain �j are used as follows:

where |||�j
||| is the size of �j. The local training outlier scores 

O
(
�j

)
 (Figure 1, part C) can be obtained from the previously 

generated training score matrix O
(
Xtrain

)
 as follows:

To determine the competence of each base detector in 
a local domain, ADAHO calculates the Pearson correlation 

similarity measure between the base detector score br

(
X
�j

train

)
 

and simulated label target�j . This method is considered to 
be more reliable for outlier detection because it uses a sim-
ilarity measure for evaluating detectors instead of absolute 
accuracy [41], which is helpful because most outlier datasets 
are unpredictable and imbalanced. ADAHO then picks the 
base detector b∗

r
 with the greatest similarity measure rela-

tive to the optimal base detector in a test sample X(j)
test and its 

outlier score b∗
r

(
X
(j)
test

)
 is retained as an intermediate result 

for later use.

4.4 | Fusion of base detector outcomes

Because our base detectors are heterogeneous, their 
scores may vary in terms of range and interpretation [34]. 
Therefore, fusing scores directly would be inappropriate, 
meaning an agreement must be achieved within the en-
semble. Based on the literature, agreement methods can be 
grouped into two main categories: rank-based and score-
based methods. In rank-based methods, detector scores are 
ordered into ranked lists, which makes all detector scores 
equivalent and allows for easy fusion. Aggregation is then 
performed to merge all of the scores into a single ranked 
list. Similarly, score-based methods convert outlier scores 
into probabilities using either exponential or Gaussian 
scaling based on posterior probabilities, regularization, or 
normalization. This makes the outlier scores across dif-
ferent detectors comparable, meaning a final score can be 
calculated via averaging or maximization. Because rank-
based aggregation yields a relatively crude ordering of data 
instances [11], ADAHO uses such aggregation sparingly 
for rearranging outlier scores. We adopt a score-based 
method, such as mixture modeling, which converts out-
lier scores into probabilities by modeling them as samples 
from a mixture of exponential (for inliers) and Gaussian 
(for outliers) distributions and provides binary classes for 
instances with probabilities greater than 50% receiving 

(9)target=�
(
O
(
Xtrain

))
∈

n×1.

(10)�j =
{

xi|xi ∈Xtrain, xi ∈ avgkNN(j)
}

,

(11)target�j =
{

targetxi
|xi ∈�j

}
∈|�j|×1,

(12)O
(
�j

)
=
[
b1

(
�j

)
,… , br

(
�j

)]
∈|�j|×R.

Dataset [43] Dim (d) Inst. (n) Inliers Outliers %

Mnist 100 7603 6903 700 9.207

Letter 32 1600 1500 100 6.250

Cardio 21 1831 1655 176 9.612

Annthyroid 6 7200 6666 534 7.417

Pima 8 768 500 268 34.895

Vowels 12 1456 1406 50 3.434

Thyroid 6 3772 3679 93 2.466

Pendigits 16 6870 6714 156 2.271

Breastw 9 683 444 239 34.990

Stamps 9 340 309 31 9.120

T A B L E  1  Benchmark datasets used in 
our experiments
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a value of one (ie, outliers) and those with probabilities 
less than 50% receiving a value of zero (ie, inliers). We 
then apply ADAHO_MaxA to the top-h performing detec-
tors with respect to their targets or apply ADAHO_AvgM, 
where the average of h chosen detectors with respect to 
their targets is taken as a subgroup score (Figure 1 Part D). 
The final score is obtained by taking the maximum among 
all subgroup scores. To reduce bias, ADAHO_MaxA and 
ADAHO_AvgM are used to reduce the risk of picking only 
the best-performing base detector. The bias in an ensem-
ble is significantly reduced by the fact that only the top-h 
performing base detectors with respect to their targets are 
selected and that these h detectors do not increase overall 
variance.

5 |  EXPERIMENTS

5.1 | Experimental goals

The goal of our experiments was to determine which clas-
sifiers serve as the best weak learners for constructing the 
base detectors for the outlier detection ensemble. A weak 
learner, as defined in the literature, is a learner with an 
error rate less than 50% (�t (i) < 0.5). In this experiment, 
ADAHO automatically rejected learners with error rates 
greater than 50% and restarted its loop. Only learners with 
�t (i) < 0.5 were accepted and stored in B for later selec-
tion based on their performance in their areas of expertise 
or local domains. Optimal learners were then carefully se-
lected for fusion in a second phase. This process is followed 
by the testing of different combinations or fusion strategies 
(orders) for the formation of an improved outlier detection 
ensemble. To this end, two different experiments were per-
formed. One compared existing global methods (discussed 
in Section 3) to the proposed ADAHO variants and the other 
compared outlier score outputs, which is helpful for identi-
fying improvements.

5.2 | Datasets and assessment metrics

Table 1 lists 10 publicly available outlier detection benchmark 
datasets from ODDS [43] that were used in our experiments. The 
dimensions, instances, and numbers of inliers and outliers are 
shown. In each dataset in the experiment, 70% of the data was 
used for training and the remaining 30% was set aside for testing. 
To evaluate performance, the average scores of ten independent 
trials were used to calculate the area under the receiver-operating-
characteristic curve (ROC, AUC) and average precision because 
these metrics are widely used in outlier research [8,9,11,12,36]. 
To determine if two results contain significant differences, 
the non-parametric Friedman test was adopted. This test was T
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followed by the statistical analysis of results [47]. In every trial, 
p < 0.05 was considered to be statistically relevant.

5.3 | Experimental design

In our first experiment, we compared six techniques 
considered to be global (Section  3) or baseline based on 
their testing domains, namely G_Th, G_Avg, G_Max, 
G_Wa, G_MoV, and G_AoM, with four ADAHO vari-
ants (ADAHO_Avg, ADAHO_Max, ADAHO_MaxA, and 
ADAHO_AvgM, as described in Table 2 and Algorithm 1). 
For G_AoM and G_MoA, two subgroups (ie, 2g) were cre-
ated, each containing five unique base detectors to avoid 
similar results. For ADAHO, k was set to 30 for the sake 
of consistency in local domain definition. Z-normalization 
was applied to equalize base detector scores prior to fu-
sion [34]. For consistency during performance assessment, 
all classifiers used a pool of at least four base detectors. 
Because the base learners were heterogeneous, outcome di-
versity was guaranteed.

In our second experiment, evaluation was performed to 
select optimal base learners based on their competence in 
their local domains.

Comparisons were performed using Pearson correla-
tion and Euclidean distance. A smaller Euclidean distance 
between two data points results in a larger weight, while 
a smaller Pearson correlation results in a smaller weight. 
Therefore, to align the ranking scales, we performed inverse 
ranking of Euclidean distances.

6 |  RESULTS AND DISCUSSION

6.1 | Performance of ADAHO

In the outlier detection field, the ROC and AUC are impor-
tant metrics for evaluating detection quality. The results of 
our first experiment in terms of AUC are listed in Table 2. 
A total of 10 datasets were considered. The various base-
line outcomes of global averaging, maximization, average-
of-maximum, maximum-of-average, weighted averaging, 
and global threshold summation versus the ADAHO vari-
ants (ADAHO_Avg, ADAHO_Max, ADAHO_MaxA, and 
ADAHO_AvgM) are presented. Compared to the global 
methods, the ADAHO variants provided enhanced perfor-
mance, particularly ADAHO_AvgM, where notable im-
provements are highlighted (bold). This is a strong indication 
that the ADAHO algorithm performs better by using local do-
main detector selection criteria. It achieves improved results 
for at least 6 datasets out of 10, which is a very promising 
outcome. For our second experiment, the average precision 
values are presented. Again, ADAHO yields improvements T
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in at least seven datasets out of ten using the ADAHO_AvgM 
variant.

Regarding the performances of the selected base-
line classifiers, G_Max exhibited improvement for two 
datasets (letter and vowels) in the first experiment (high 
ROC values) while G_AoM exhibited improvement for 
only one dataset (annthyroid) in the second experiment 
in terms of average precision (Table  3). For the other 
tests in both experiments, ADAHO exhibited superior re-
sults. Furthermore, regarding the global methods, aver-
age-of-maximum and maximum-of-average are superior 
to simple maximization or averaging. This is attributed 
to the fact that fusion considers a second dimension 
and yields more stable outcomes, which is also why the 
ADAHO yield higher scores. These results also support 
the case presented in [40]. For averaging and maximiza-
tion in the global domain, local competency assessment 
provides weaker overall results, but less variance and 
bias based on global averaging. It is preferable for all 
learner outcomes to be used in the final fusion process 
to reduce bias, but this could deteriorate overall ensem-
ble performance because some low-performance (noisy) 
learner outputs would be included. In contrast, select-
ing one optimal learner yields a smaller variance drop 
compared to averaging based on all learner outcomes, 
which can also lead to deteriorated overall ensemble per-
formance based on strong bias from the single selected 
learner.

By using the maximum value to generate a simulated label 
or ground truth, both the global and ADAHO_Max methods 
become less stable. For example, ADAHO_Max only per-
formed better than global average-of-maximum on the letter 
and vowels datasets in our first experiment and only on the 
breastw dataset in our second experiment (Table 3). It is evi-
dent that if only a learner's maximum score is used, then the 
overall ensemble will have high variance. However, applying 
a second fusion, such as averaging, mitigates this effect. This 
finding was also reported in [40]. Furthermore, to reduce 
the variance of an ensemble, ADAHO takes advantage of 
the G_AoM effect by calculating the mean of outlier scores 
from subsets of optimal learners, meaning ADAHO_AvgM 
further reduces the variance of the final ensemble compared 
to ADAHO_Max.

To reduce ensemble bias, ADAHO_AvgM calculates an 
average in the second-level fusion, which also improves 
accuracy. This is evident in the experimental results as 
ADAHO_AvgM yields higher scores for six datasets in 
terms of the ROC, namely mnist, cardio, pima, thyroid, 
breast, and stamps (Table  2), and for seven datasets in 
terms of average precision, namely mnist, cardio, pima, 
thyroid, pendigits, breastw and stamps (Table 3). Based on 
our experiments, it is clear that calculating the maximum 
after the mean does not significantly improve classification 

results. This is evident for ADAHO_MaxA, which is 
not improved significantly by either global averaging or 
maximum-of-averaging. In summary, ADAHO_AvgM is 
a superior fusion strategy based on its ability to reduce 
both variance and bias, which answers the question regard-
ing which is the best fusion strategy for outlier detection 
ensembles.

6.2 | Evaluation of competence

The similarity between base learner outcomes and the simu-
lated ground truth determines the evaluation of competency. 
However, it is clear that only small differences can be ob-
served when a Friedman test is performed on both Euclidean 
distances and Person correlations with respect to the ROC 
and average Precision because performance variance is so 
minimal (less than 1%). Furthermore, the weights assigned 
to the base learners did significantly improve model perfor-
mance because the weight assignment process proved to be 
computationally expensive.

To reduce this computational cost, additional measures, 
such as the determination of the value of k for the size of a local 
domain, could be normalized so long as they do not affect per-
formance, even when outliers are within a dense domain. In 
this work, when the size of k was set to large values such that 
the local target and detector outcomes could be normalized, 
Euclidean distance became the most effective method.

6.3 | Challenges and possible enhancements

First, ADAHO’s local domain derivation technique relies 
on obtaining the closest neighbors to a test instance using a 
Euclidean distance approach. This approach poses two chal-
lenges: (a) significant time is consumed while establishing 
a test instance's nearest neighbors and (b) performance in 
multidimensional spaces may be degraded, especially when 
some features or attributes are inconsequential.

To overcome these challenges, the first problem of local 
domain definition can be handled using either clustering 
[13] or prototyping [32], which can significantly reduce the 
time required for setting the local domain because not all 
data points are required for these two methods. Regarding 
the second challenge of handling multidimensional data, 
additional fusion techniques could be implemented. 
Techniques such as pruning [11] and model fusion [41] 
could be more effective for multidimensional data setups 
compared to pure averaging or maxing and aggregation 
fusion. Based on these solutions, ADAHO could become 
more versatile and effective for various separations of data 
spaces while retaining its advantages of reducing bias and 
variance.
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7 |  CONCLUSIONS AND FUTURE 
WORK

This paper proposed the ADAHO model, which is an adap-
tive boosting algorithm for the formation of outlier detection 
ensembles. Four variations that calculate the maximum, av-
erage, maximum-of-average, and average-of-maximum base 
learner scores were presented. ADAHO calculates optimal 
base learner outcomes with respect to their local domains 
and fuses these outputs with the goal of reducing both vari-
ance and bias while improving overall ensemble accuracy. 
ADAHO was tested on ten benchmark datasets and it pro-
vided improved results compared to existing methods that use 
global scores. The variant ADAHO_Avg showed the most 
promising fusion results and was identified as a superior fu-
sion strategy because it yielded improved results for 6 out of 
10 datasets in terms of the ROC and seven out of ten datasets 
in terms of mean average precision. This variant also reduced 
variance and bias because it averages the variance of base 
learner outcomes in the second stage. ADAHO utilizes het-
erogeneous base detectors, meaning diversity among learner 
outcomes is guaranteed.

In the future, some additional areas that could be inves-
tigated include the following. The setting of local domains 
could be optimized to reduce time consumption when iden-
tifying a test instance's nearest neighbors. Additionally, an 
optimized method for determining the value of k should be 
considered because dataset features change continuously, 
meaning k must be dynamic. For unsupervised methods, a 
simulated ground truth is necessary and we used a simple av-
erage in this study. This method could be extended based on 
clustering. Finally, additional tests and validations should be 
conducted using the proposed model to establish its practical 
usage in high-dimensional spaces.
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