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1 |  INTRODUCTION

The implementation of new and evolving technological con-
cepts increases the opportunity to exploit new cyber-attack 
surfaces. Every web-facing device or service is vulnerable 
when connected to the Internet. Previously independent de-
vices are becoming accessible through new software proto-
cols and physical communication channels. Internet of things 
(IoT) significantly increases the attack surface available to 
malware developers. In 2016, Mirai [1] compromised IoT 
devices and contributed to large-scale distributed denial-of 
service (DDoS) attacks. To react to new changes in malware 
evolution, cyber-security measures should also evolve. Zero-
day attacks become major malware threats if not promptly 
discovered. If established, malware uses highly automated 
and repetitive methods to propagate globally, infecting and 
compromising hosts, and forming large-scale botnets. These 

botnets can be used to launch extensive DDoS attacks or can 
further propagate and change into new variants. Kaspersky 
states that the number of malware modifications targeting 
IoT devices in the first half of 2018 was greater than the 
total number of such modifications in 2017 [2]. To under-
stand malware and its variants, in 2003, Spitzner [3] sug-
gested capturing attack data to understand the motives of 
developers and the behavior of the corresponding tools. The 
resulting honeypots uncover attack behavior with longitudi-
nal deployments, capturing large datasets for retrospective 
analysis. Early versions of honeypots had low interaction 
capabilities. They were simple devices simulating Internet 
services and detecting the presence of an attacker. Mid- and 
high-interaction honeypots (MiHPs and HiHPs, respectively) 
allowed more interaction with an attacker. To adapt to new 
malware methods, honeypots have evolved to utilize new 
technologies.
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Honeypots, regarded as dynamic, real-time analyti-
cal tools, have certain limitations. Moreover, their design, 
configuration, and operation require careful consideration. 
A compromised honeypot could itself inadvertently par-
ticipate in further attacks; therefore, honeypot operations 
require constant monitoring. Honeypots facilitate attack 
interaction with scripted responses to attack-command 
streams. If the honeypot encounters an attack command it 
cannot process, then the attack terminates. Automated mal-
ware also employs honeypot detection mechanisms within 
its code. Anti-honeypot checks cause attacks to fail when 
processes are exposed [4]. Once honeypot functionality has 
been exposed, malware such as botnets will cease the at-
tempted compromise. New malware variants employ simi-
lar techniques to evade detection by known honeypots. This 
reduces the potential size of a captured dataset and the sub-
sequent analysis. With the growth of new attack surfaces 
and vectors for malware developers, cyber-security mea-
sures, such as honeypots, should dynamically adapt to new 
threats. New methods of honeypot design and deployment 
are required to overcome the limitations against evolving 
malware. Honeypots are required to be adaptive and agile 
so that better datasets for faster forensics may be provided. 
Reinforcement learning can be used in conjunction with 
honeypot operations to provide adaptability. The state–ac-
tion space formalism outlined in Section 4 is designed to 
target automated and repetitive malware. Deployment strat-
egies should be re-examined to provide agility for new vari-
ants. A new framework is required to facilitate honeypot 
development. In this respect, the contributions of this study 
are the following:

• A new framework for honeypots is proposed. Existing tax-
onomies are assessed for relevance. Updated classes and 
values are generated, incorporating adaptive and agile 
functionality into honeypot development and deployment.

• Data captured on adaptive honeypots can be used to evalu-
ate reinforcement-learning algorithms and policies. Agile 
honeypot deployment is facilitated by Q-learning and 
SARSA (state, action, reward, state, action) under a variety 
of policy configurations.

2 |  PREVIOUS RESEARCH

2.1 | Honeypot evolution

Since their introduction in the 1990s, honeypots have 
evolved to meet the changing landscape of cyber threats. 
The number of deployments of bots and malicious code 
targeting IoT end-devices has increased [5]. In 1992, 
USENIX conferences presented work on captured cracker 
activities [6]. Terminal machines were deployed to lure 

unauthorized users and monitor their activity. Spitzner 
defined a honeypot as a “security resource whose value 
lies in being probed, attacked or compromised” [3]. 
Research on honeypots and honeynets has since increased. 
Honeyd appeared in 2003 and is an easy-to deploy, low-
risk honeypot [7], which can safely deploy virtual hon-
eypots with different IP numbers. Honeyd is considered 
a low-interaction honeypot (LiHP), gathering informa-
tion on the activities of an attacker in a virtual, confined 
space. At that point in their evolution, honeypots could 
be compromised and inadvertently partake in subsequent 
attacks [8]. Terminology such as low, medium, and high 
interaction came into honeypot parlance. LiHPs capture 
base information such as IP addresses, port numbers, and 
services. They will not permit the installation or execu-
tion of downloaded malware, and their implantation is 
considered low risk. By contrast, HiHPs provide to the 
attacker more scope for installing malware and exploring 
the operating system and file structure. This has the ad-
vantage of maintaining the interest of attackers and cap-
turing more information on their behavior. HiHPs are real 
systems, often mirroring live production systems. The ob-
vious disadvantage of a more interactive honeypot is the 
potential for compromising the honeypot itself. This could 
allow access to live production networks or participation 
in subsequent attacks. Nepenthes [9] is a LiHP emulating 
known vulnerabilities used by worms to spread across the 
Internet. Argos [10] is a HiHP providing real system func-
tionality through the guest OS to capture zero-day attacks. 
Virtualization enabled the low-risk deployment of HiHPs 
[11], isolating attack traffic from connected hardware 
and networks [12]. Owing to the popularity of honeypots, 
comprehensive surveys of their technology have appeared, 
with the most relevant being the most recent [13–15]. The 
European Network and Information Security Agency is a 
center of network and information security expertise for 
European Union member states [16]. In 2012, it issued the 
Proactive Detection of Security Incidents report, which 
presented the test and evaluation results for over 30 ex-
isting honeypots. The report indicated difficulties with 
honeypot usage, documentation, software stability, and 
developer support, and made recommendations for the fu-
ture of honeypot development.

Emerging networking technologies have opened up 
new directions in honeypot deployment. Real-time visual-
ization of global attacks is provided by Deutsche Telekom 
Honeypot Project [17]. This honeypot-development com-
munity produced T-Pot, which is used for collectively 
capturing and visualizing attacks on multiple well-known 
honeypots. Other substantial advances in honeypot de-
ployment include the use of software-defined networking 
to design and deploy flexibly next-generation honeynets 
[18–21].
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2.2 | Taxonomies

Zhang [22] introduced a taxonomy to standardize the devel-
opment and deployment of honeypots. In this taxonomy, the 
function of honeypots as security mechanisms was classified 
as follows: prevention, detection, reaction, or research. As 
more devices were connected to the Internet, and threats ac-
cordingly evolved, Seifert introduced an updated taxonomy 
in 2006 [23]. Six core classes were proposed, each with its 
own set of values, as can be seen in Table  1. Technology 
and malware as well as honeypot development have since 
evolved. The heterogeneous nature of new devices coupled 
with emerging attack vectors affects the relevance of this 
taxonomy and is explored in Section 3. Further research has 
classified honeypot operations and has proposed a taxonomy 
to gain insight into honeynet architecture [24].

2.3 | Malware evolution

The development of the connected world of ARPANET and 
personal computers in the 1980s provided increased oppor-
tunities to create malicious software. ARPANET terminals 
infected by the Creeper worm posted a message and opened 
new connections to other terminals [25]. Fred Cohen coined 
the term virus in 1987, referring to a computer program that 
could infect a computer, make a copy of itself, and spread to 
other machines [26]. HTML facilitated the creation and ex-
pansion of the World Wide Web in the early 1990s. This ex-
pansion, in turn, facilitated the spread of malicious software. 

Evolutionary web paradigms gave rise to new methods and 
malware variants.

It is a great irony that a botnet provided a census of con-
nected routers on the Internet. The Carna botnet scanned 
the IPv4 address space to generate an image of fixed-line 
Internet connectivity [27]. This automated and repetitive 
program globally propagated and compromised devices, pre-
dominately routers, to measure the extent of Internet access. 
The original Creeper worm used an automated and repetitive 
method to propagate and infect terminals. The human fac-
tor involves designing, coding, and launching the malware. 
Infected machines may communicate with the command-and 
control (C&C) center, which is also operated by a human 
botmaster. Human naivety contributes to local compromise, 
as end users unwittingly enable content, but global infec-
tion predominately uses automated and repetitive methods. 
Botnets provide a mechanism for global propagation and 
control of cyber-attack infection. They are defined as large 
networks of compromised machines used to carry out further 
attacks [28]. Real-time systems are employed to detect and 
prevent malware infection. Firewalls, IDS, IPS, anti-virus, 
and access lists are some of the commonly used and widely 
accepted measures implemented to negate the effect of mal-
ware. Malware can exploit vulnerabilities at all layers of the 
open-system interconnection model. For example, physical 
wireless IoT infrastructure can be vulnerable to war-driving 
[29], whereas application services such as SQL and HTML 
are often targeted [30]. Coupled with this is the vast array 
of potential attack vectors available to malware developers. 
Every wired and wireless communication protocol becomes a 
potential entry point. Brute-force and dictionary attacks gain 
entry for subsequent exploitative software. From a security 
perspective, one benefit of deploying honeypots is knowing 
that all captured activity is malicious.

2.4 | Malware capture on honeypots

Honeypots actively seek to interact with cyber attacks by 
simulating vulnerable Internet services and devices. This is 
their raison d’être and can result in honeypot datasets rich 
in repetitive, automated attack sequences [31]. The analyti-
cal value associated with datasets of this type is longitudinal, 
providing spatiotemporal information on attack patterns [32]. 
Accordingly, honeypot detection tools and evasion tech-
niques are designed into malware [33]. For example, hon-
eypot hunter identifies honeypot functionality by generating 
false services and observing their execution [34]. Successful 
execution of these services identifies the connected device 
as a honeypot. Virtual-machine (VM) detection techniques 
identify the presence of virtual infrastructure by executing 
simple kernel commands [35]. Conficker and Spybot scan for 
the presence of a VM and terminate or modify their attack 

T A B L E  1  Seifert's taxonomy for honeypot development

Class Value

Interaction level High

Low

Data capture Events

Attacks

Intrusions

None

Containment Block

Diffuse

Slow down

None

Distribution appearance Distributed

Standalone

Communication interface Network interface

Non-network interface

Software API

Role in multitier architecture Client

Serve
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methodology accordingly [36]. Consequently, honeypot ef-
fectiveness is compromised, and the quality of the resultant 
dataset is reduced. Inadvertent termination of attack interac-
tion truncates the attack sequences captured by the honeypot.

A vast collection of LiHPs, MiHPs, and HiHPs simulat-
ing server and client services are available on multiple at-
tack vectors [14]. To coordinate this diversity, a versatile 
virtual-honeynet framework focusing on the management 
of automatic honeypot deployment has been proposed [37]. 
Predominately, LiHPs and MiHPs are simulations provid-
ing scripted responses. They are not at risk of being com-
promised and provide basic information for analysis, such as 
IP addresses and timestamps. These can be deployed quickly 
and require little maintenance. For better analysis, HiHPs are 
real systems actively engaging with the attacks. These hon-
eypots gather additional information on attack code, C&C 
communication, and downloaded files, and they require time 
for their proper configuration, deployment, and maintenance. 
Malware developers use obfuscation to avoid the detection 
of installed software and C&C communications [38]. When 
it was released, the Mirai botnet spawned multiple variants 
with similar attack methods. A sample of the Mirai bot is 
shown in Table 2. Mirai is the dominant malware type cap-
tured by the adaptive honeypot detailed in Section 4. Owing 
to its dominance, it is used to standardize the optimization 
of the adaptive honeypot in Section 5. The type of malware 
captured will therefore depend on the interaction level, attack 
vectors, and services configured on the honeypot. The latest 
related survey found that most researchers tend to pose ques-
tions related to the attack source, target, and frequency [14]. 

Thus, significant deployment periods are required to capture 
the necessary data and perform longitudinal analysis.

3 |  CONCEPTUALIZED 
FRAMEWORK

The classes from Seifert's taxonomy in Table 1 are evaluated 
for relevance and are incorporated into the new framework. 
Adaptive and agile honeypots can be developed using the 
cyclic processes of (a) adaptive honeypot development, (b) 
time-limited deployment and data capture, and (c) honeypot 
optimization. The framework shown in Figure  1 facilitates 
honeypot development, expedites the capture of complete 
datasets, and ultimately leads to improved cyber forensics.

The top half of the framework uses five classes and one pro-
cess for adaptive honeypot generation. The functionality and 
performance of the adaptive element are detailed in Section 
4. The bottom half of the framework uses one class and two 
processes to enable agile functionality. The functionality and 
performance of the agile element are detailed in Section 5.

To mitigate against detection and inadvertent termination, 
and to handle repetitive truncated datasets, it is incumbent on 
honeypot developers and operators to implement alternative 
measures. These measures provide the adaptability to learn 
from attack interactions and the agility ensuring that honeypots 
may be expeditiously deployed, optimized, and redeployed. 
The existing taxonomy in Table 1 should be revisited to con-
sider the relevance of its classes and actions. The automated 
and repetitive characteristics of malware affect this relevance, 
and therefore the classes and values should be examined for 
evolving malware threats. Even though some elements of this 

T A B L E  2  Mirai bot sample [39]

Sequence Bot Command

1 /gweerwe323f

2 sudo/bin/sh

3 /bin/busybox

4 /gweerwe323f

5 mount

6 /gweerwe323f

7 echo -e ‘\x47\x72\x6f\x70’>//.nippon

8 cat//.nippon

-- ---------------

38 /gweerwe323f

39 cat/bin/echo

40 cd/

41 wget http:// <RedactedIP>/bins/usb_bus.x86-O 
->usb_bus; chmod 777 usb_bus

42 chmod 777 usb_bus

43 ./usb_bus

44 /gweerwe323f
F I G U R E  1  Framework for adaptive, agile honeypot 
development, and deployment

Adaptive
honeypot

Agile
honeypot

Stream captured
dataset through

HARM in controlled
environment

Data Capture:
• Time limited
• Intrusions
• Events
• Attacks

Containment:
Diffuse
Block

Slow down
None

Role in a multi-tiered 
architecture:

Function (RFD, FFD)
Client
Server

Interaction Level:
High

Adaptive
Distribution Appearance:

Standalone 
Distributed

Communications Interface:
Network interface

Software API

Integrate
Machine

Learning (ML)
into HiHP

Functionality

Time Limited
Deployment

and data
Capture

Optimise
Deployments
by evaluating

ML Algorithms
and Policies
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taxonomy remain valid, updated classes and values should be 
considered for a new framework for adaptive, agile honeypots.

• Interaction: Although LiHPs are available, they only 
simulate Internet services and capture basic interactions. 
Machine-learning functionality can be used to learn from 
attack code interacting with the honeypot. This gives rise 
to a new value for the “interaction level” class, namely, 
adaptive. HiHPs with adaptive abilities should be deployed 
for faster realization of attack sequences.

• Data capture: All automated interactions are captured by 
honeypots. Longitudinal deployment results in datasets 
containing repetitive data. The new value time limited 
should be added to the “data capture” class to improve 
cyber forensics. Adaptive honeypots prolong interaction 
and capture more relevant information. Section 5 demon-
strates that adaptive datasets realize attack sequences faster. 
Continuing to deploy an adaptive honeypot is redundant. 
Optimization and redeployment ensure agility for such a 
honeypot. Containment: The values for this class remain 
highly relevant. Virtualization has abstracted the honeypot 
from the underlying architecture and has mitigated the eth-
ical concerns regarding operations [8]. Virtual and cloud 
platforms improve containment by providing mechanisms 
that allow or restrict specific traffic types and protocols.

• Distribution appearance: Post compromise, malware will 
scan the environment for other potential addresses and ser-
vices. New networking paradigms such as IoT will have a 
highly different distribution appearance and will encoun-
ter evolving propagation methods. Malware could evolve 
to exploit mesh networks or other non-traditional models. 
The adaptive functionality of honeypots can respond so 
that this interaction may safely be prolonged in a virtual-
ized environment.

• Communication interface: The non-network interface is a 
redundant value. Automated and repetitive malware uses 
Internet communication protocols and software applica-
tion programming interfaces (APIs) to propagate. Wired 
and wireless Internet protocols ensure permanent access 
to online services and are considered attack vectors. Non-
network interfaces on devices are not Internet facing.

• Role in a multitier architecture: Malware does not dis-
criminate post compromise. If a vulnerable device is ac-
cessible on an attack vector, malware will launch complex 
code structures to compromise the underlying architecture, 
regardless of whether the honeypot advertises client or 
server services. An adaptive honeypot will learn the best 
responses to realize all commands in an attack sequence. 
With IoT deployments gathering pace, reduced- and full-
function devices give rise to complex mesh networks re-
quiring communication and gateways to Internet services. 
Traditional client and/or server models should be expanded 
to include function.

4 |  ADAPTIVE HONEYPOT

The development of artificial-intelligence and machine 
learning libraries heralded renewed interest in deploying 
honeypots. Supervised learning is ideally suited to ret-
rospective analysis, as the algorithm can learn from or be 
trained by existing data. This learning is then used to clas-
sify new occurrences. Some examples of classifiers used on 
honeypot datasets are linear regression [40], naive Bayes, 
support vector machines, decision trees, random forest and 
nearest neighbor [41,42]. Similarly, unsupervised learn-
ing can organize data in different ways. Given a dataset, an 
unsupervised model can analyze the data to find underlying 
structures [43]. In reinforcement learning, an agent learns 
through trial-and-error interactions with its environment. 
The learning agent selects its actions based on previous 
experiences. Reinforcement-learning problems can gener-
ally be modeled using Markov decision processes (MDPs). 
Honeypots are examples of real-world problems in an in-
complete environment. Reinforcement-learning methods 
facilitate the handling of MDPs, where the model can often 
be unknown or difficult to approximate. The proposed hon-
eypot for automated, repetitive malware (HARM) involves 
the integration of reinforcement learning into existing hon-
eypot technology to exploit the characteristics of malware. 
The reinforcement-learning state–action space and reward 
function are designed to increase the number of commands 
from the attack sequence.

During the reinforcement-learning process, the agent can 
select an action that exploits its current knowledge, or it can 
opt for further exploration. Reinforcement learning provides 
parameters so that the learning environment may determine 
the reward and exploration values. Throughout deployment, 
the honeypot is considered to be an environment augmented 
with reinforcement-learning functionality. The honeypot 
states in this environment are examined and changed using 
bash scripts. The states are represented as bash commands, 
such as wget and sudo. The reinforcement-learning agent per-
forms actions on these states, such as allow, block, or sub-
stitute the execution of the attack scripts. The environment 
issues a reward to the agent for performing that action. The 
repetitive nature of the automated attack sequences facilitates 
learning over time. Eventually, the agent learns the optimal 
policy � ∗, which maps the optimal action to be taken for each 
state s. The learning process will converge as the honeypot is 
rewarded for each attack episode. This is a temporal differ-
ence method for on-policy learning and uses the transition 
from one state–action pair to the next so that the reward may 
be derived. HARM uses SARSA for the implementation of 
on-policy reinforcement learning (1). The reward policy Q 
is estimated for a given state st and a given action at. The 
environment is explored using a random component ε or ex-
ploited using the learnt Q values. The estimated Q value is 
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updated through a received reward rt and an estimated future 
reward Q(st+1, at+1) that is discounted (γ). A learning rate pa-
rameter is also applied (α). The policy is evaluated at the end 
of each attack episode. 

From a functional perspective, HARM has the following 
elements:

• A Kippo honeypot modified to pass variables to the learn-
ing agent. Depending on the action selected by the learning 
agent, the honeypot will allow, block, or substitute attack 
commands.

• SARSA learning agent. This module receives the required 
variables from HARM and calculates Q(st, at) using (1). 
It determines the responses selected by HARM and learns 
over time which actions yield the greatest amount of re-
ward. PyBrain is a machine-learning library and is used to 
facilitate this reinforcement-learning functionality [44].

All external attack-command sequences interact with the 
honeypot only. HARM was developed to generate rewards 
on 75 states and is publicly available [45]. Figure 2 shows 
the relationship between HARM elements, the captured 
data, and the subsequent use and analysis of these data. 
Both Kippo and PyBrain are written in Python, providing 
seamless interaction. The attack commands are parsed as 

the current state and passed to the PyBrain module, which 
selects the action that will return the maximal value for 
a given state. The PyBrain module is separate from the 
Kippo honeypot and only communicates with the honeypot. 
Previous approaches, such as Heliza [46] and RASSH [47], 
have also used reinforcement learning to prolong the attack 
duration. However, these approaches assumed human at-
tackers, and therefore they are inadequate for automated, 
repetitive malware. HARM demonstrated improved learn-
ing and reward functionality over previous approaches 
[48]. AmazonWeb Services EC2 was used to facilitate the 
deployment of Internet-facing honeypots: a normal Kippo 
honeypot and HARM. Kippo, PyBrain, MySQL, and other 
dependencies were installed on the adaptive honeypot EC2 
instance, which was accessible through SSH for a 30-day 
period and immediately started to record repetitive mal-
ware activity. Initially, it logged dictionary and brute-force 
attempts and then captured other malware traffic, includ-
ing a Mirai-like bot (Table 2). These commands represent 
post-compromise interactions. This bot became the domi-
nant attacking tool over a 30-day period until over 100 dis-
tinct, repetitive attacks were recorded on both honeypots. 
Other SSH malware interacted with the honeypot as well. 
The novel state–action space formalism demonstrated im-
proved adaptive learning and an increase in the number of 
commands captured by the honeypot compared with stan-
dard honeypots [48]. By further examining the malware 
code interactions, it can be seen that the adaptive honeypot 

(1)Q
(

st, at

)

←Q
(

st, at

)

+a
[

r+�Q
(

st+1, at+1

)

−Q
(
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F I G U R E  2  Adaptive elements and data capture in HARM
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overcame detection techniques employed by malware [49]. 
When standard honeypots encounter these techniques, the 
captured datasets contain truncated sequences of automated 
and repetitive attacks. Figure 3 shows that, compared with 
standard honeypots, the adaptive honeypot exhibited pro-
longed interaction and improved data capture.

5 |  AGILE HONEYPOT

Data capture on HARM can be used to evaluate reinforcement-
learning algorithms and policies. Agile honeypot deployment 
is facilitated by Q-learning and SARSA under a variety of 
policy configurations. The adaptive ability of HARM results 
in the capture of a dataset containing prolonged attack in-
teractions. Therefore, to ascertain whether continuing with 
the deployment is relevant, the deployment period should be 
considered. Optimizing and redeploying HARM may expe-
dite the capture of more relevant information.

5.1 | Deployment period

The diversity of malware was discussed in Section 2.3. To 
further enhance the efficacy of honeypot technology, honey-
pot deployment should be considered. Longitudinal honey-
pots collect large datasets of repetitive attacks. These operate 
for long periods capturing repetitive, automated, and incom-
plete attack sequences. Analyzing the dataset captured by the 
honeypots provides further information (Dataset 1, Figure 2). 
The standard honeypot only interacted with the first eight 
commands in the Mirai attack sequence. This accounts for 
the linear evolution of cumulative transitions in Figure 3. It 
failed to realize the entire attack sequence. It should be noted 
that the repetitive, automated variant had 44 commands in the 
attack sequence (Table 2). Figure 4 shows the increases in 
attack interactions and identifies the distinct attacks resulting 
in this increase.

It is seen that the state–action space formalism for auto-
mated, repetitive malware rewarded the learning agent until 

F I G U R E  3  Cumulative-transition comparison

4000

3000

2000

1000

0
28/11 01/12 04/12 07/12 10/12 13/12 16/12 19/12 22/12 25/12 28/12 31/12

Attack days

# 
Tr

an
sit

io
ns

Adaptive
Kippo honeypot

F I G U R E  4  Realization of entire attack sequence

Attack days

# 
Tr

an
sit

io
ns

Adaptive
Kippo honeypot

0
28/11 01/12 04/12 07/12 10/12 13/12 16/12 19/12 22/12 25/12 28/12 31/12

10

20

30

40

50



972 |   DOWLING et aL.

all commands in the attack sequence were realized. The re-
alization of the entire attack sequence was affected by other 
malware interactions on HARM. Moreover, the adaptive hon-
eypot completed its task after 19 days (17/12/2017), rendering 
subsequent attack interactions and data collection redundant. 
The frequency of the Mirai variant was uniform throughout 
the duration of the deployments. The repetitive nature of the 
bot provides the adaptive environment with the opportunity 
to learn from each attack iteration. Continuing to operate the 
adaptive IoT honeypot was unnecessary after the realization of 
the entire attack sequence. For this short 30-day deployment, 
approximately 45% of the period and dataset were redundant.

5.2 | Optimization

The command sequences from the online deployment can func-
tion as an input stream into an implementation of HARM on a 

local, offline Eclipse environment. The input stream is parsed by 
a Python action daemon to reflect malware interactions captured 
by the online deployment. HARM was deployed on the Internet 
using SARSA (1). Python allows the adaptive honeypot to im-
port and use SARSA or Q-Learning. It can also specify the ε-
greedy explorer component and the following explorer policies:

• Epsilon greedy: A discrete explorer that mostly executes 
the original policy but occasionally returns a random 
action.

• Boltzmann softmax: A discrete explorer that executes ac-
tions with a probability that depends on their values.

• State dependent: A continuous explorer that disrupts the 
resulting action with added, distributed random noise.

The optimization process examines the performance of 
HARM, configured with varying combinations of learn-
ing algorithms and explorer policies against the malware 
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variant in Table 2. ε-greedy was streamed three times with 
parameter 0.05, 0.1, and 0.15. Therefore, for SARSA, the 
dataset was streamed five times: once for Boltzmann soft-
max and state dependent, and three times for ε-greedy. The 
process was then repeated for Q-Learning. The dataset 
from Section 4 was streamed 10 times through the adap-
tive honeypot in a controlled Eclipse environment. The first 
sequence (five times) with the learner set to SARSA, and 
the second sequence with the learner set to Q-Learning. 
The honeypot captured the interactions, actions, and num-
ber of commands in the Miraivariant attack sequence that 
represented transitions from s to st + 1. These transitions 
were collated, and HARM was reset after each streaming. 
Figures 5 and 6 show the performance of the explorer pol-
icies for SARSA and Q-Learning, respectively. It can be 
seen that SARSA and state dependent realized the entire 
attack sequence after 38 iterations (Figure 5). Q-Learning 
combined with Boltzmann softmax required 31 iterations 
for the same task.

Two controlled experiments were further conducted with 
the dataset. The best-performing combinations, namely 
SARSA/state dependent and Q-Learning/Boltzmann-softmax 
were configured on separate honeypots. These combina-
tions performed best against one particular malware variant. 
The entire dataset was streamed through both combinations, 
and the cumulative number of transitions was computed. 
Figure 7 shows that the SARSA/state dependent combination 
performed approximately 6% better than the Q-Learning/
Boltzmann softmax combination. This experiment highlights 
the agility requirement in honeypot deployment. Although 
Q-Learning/Boltzmann softmax realized the Miraivariant at-
tack sequence faster (31 vs 38 attack iterations), SARSA/state 
dependent accumulated more transitions on the entire data-
set, beginning at attack 59 (Figure 7). Continuous monitoring 
and analysis of honeypot datasets can provide new combina-
tions for redeployment.

6 |  CONCLUSIONS

Cyber forensics should evolve with malware methods. 
Technological advancements provide new attack vectors, 
and honeypots should adapt accordingly. In this paper, we 
proposed a new framework that uses machine-learning to 
construct adaptive honeypots; moreover, we proposed deploy-
ment methods rendering these honeypots agile. Adaptability 
and agility were demonstrated on a live honeypot dataset cap-
tured on an SSH attack vector. A number of surveys have 
presented honeypot technology targeting malware on other 
attack vectors. The development and operations of honey-
pots are based on older taxonomies designed to produce large 
datasets over longitudinal deployments. This framework 
can be applied to honeypots on other attack vectors. To be 
relevant for cyber forensics, honeypot technology requires 
an updated development framework that (a) is cognizant of 
malware evolution, (b) can use new technology in honeypot 
development to adapt to this evolution, and (c) can ensure 
deployment and optimization agility. Honeypot datasets suf-
fer from repetition. Adaptive, agile honeypots can exploit the 
characteristics of automation and repetition to expedite the 
exposition of malware attack methods. The targeted Mirai bot 
was the dominant attacking tool. Other malware was highly 
infrequent throughout the deployment duration. Short adap-
tive deployments coupled with optimization and redeploy-
ment can improve the discovery of new malware variants.
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