
ETRI Journal. 2020;42(6):965–975. | 965wileyonlinelibrary.com/journal/etrij

1 | INTRODUCTION

The implementation of new and evolving technological con-
cepts increases the opportunity to exploit new cyber-attack
surfaces. Every web-facing device or service is vulnerable
when connected to the Internet. Previously independent de-
vices are becoming accessible through new software proto-
cols and physical communication channels. Internet of things
(IoT) significantly increases the attack surface available to
malware developers. In 2016, Mirai [1] compromised IoT
devices and contributed to large-scale distributed denial-of
service (DDoS) attacks. To react to new changes in malware
evolution, cyber-security measures should also evolve. Zero-
day attacks become major malware threats if not promptly
discovered. If established, malware uses highly automated
and repetitive methods to propagate globally, infecting and
compromising hosts, and forming large-scale botnets. These

botnets can be used to launch extensive DDoS attacks or can
further propagate and change into new variants. Kaspersky
states that the number of malware modifications targeting
IoT devices in the first half of 2018 was greater than the
total number of such modifications in 2017 [2]. To under-
stand malware and its variants, in 2003, Spitzner [3] sug-
gested capturing attack data to understand the motives of
developers and the behavior of the corresponding tools. The
resulting honeypots uncover attack behavior with longitudi-
nal deployments, capturing large datasets for retrospective
analysis. Early versions of honeypots had low interaction
capabilities. They were simple devices simulating Internet
services and detecting the presence of an attacker. Mid- and
high-interaction honeypots (MiHPs and HiHPs, respectively)
allowed more interaction with an attacker. To adapt to new
malware methods, honeypots have evolved to utilize new
technologies.

Received: 29 March 2019 | Revised: 7 March 2020 | Accepted: 24 March 2020

DOI: 10.4218/etrij.2019-0155

O R I G I N A L A R T I C L E

New framework for adaptive and agile honeypots

Seamus Dowling1 | Michael Schukat2 | Enda Barrett2

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2020 ETRI

1Mayo Campus, Galway Mayo Institute of
Technology, Mayo, Ireland
2Discipline of IT, College of Engineering
and Informatics, National University of
Ireland Galway, Galway, Ireland

Correspondence
Seamus Dowling, GMIT, Mayo Campus,
Castlebar, Mayo, Ireland.
Email: seamus.dowling@gmit.ie

Funding information
None reported.

This paper proposes a new framework for the development and deployment of hon-
eypots for evolving malware threats. As new technological concepts appear and
evolve, attack surfaces are exploited. Internet of things significantly increases the
attack surface available to malware developers. Previously independent devices are
becoming accessible through new hardware and software attack vectors, and the ex-
isting taxonomies governing the development and deployment of honeypots are in-
adequate for evolving malicious programs and their variants. Malware-propagation
and compromise methods are highly automated and repetitious. These automated and
repetitive characteristics can be exploited by using embedded reinforcement learning
within a honeypot. A honeypot for automated and repetitive malware (HARM) can
be adaptive so that the best responses may be learnt during its interaction with attack
sequences. HARM deployments can be agile through periodic policy evaluation to
optimize redeployment. The necessary enhancements for adaptive, agile honeypots
require a new development and deployment framework.

K E Y W O R D S

adaptive, agile, framework, honeypots, reinforcement learning

www.wileyonlinelibrary.com/journal/etrij
mailto:
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:seamus.dowling@gmit.ie

966 | DOWLING et aL.

Honeypots, regarded as dynamic, real-time analyti-
cal tools, have certain limitations. Moreover, their design,
configuration, and operation require careful consideration.
A compromised honeypot could itself inadvertently par-
ticipate in further attacks; therefore, honeypot operations
require constant monitoring. Honeypots facilitate attack
interaction with scripted responses to attack-command
streams. If the honeypot encounters an attack command it
cannot process, then the attack terminates. Automated mal-
ware also employs honeypot detection mechanisms within
its code. Anti-honeypot checks cause attacks to fail when
processes are exposed [4]. Once honeypot functionality has
been exposed, malware such as botnets will cease the at-
tempted compromise. New malware variants employ simi-
lar techniques to evade detection by known honeypots. This
reduces the potential size of a captured dataset and the sub-
sequent analysis. With the growth of new attack surfaces
and vectors for malware developers, cyber-security mea-
sures, such as honeypots, should dynamically adapt to new
threats. New methods of honeypot design and deployment
are required to overcome the limitations against evolving
malware. Honeypots are required to be adaptive and agile
so that better datasets for faster forensics may be provided.
Reinforcement learning can be used in conjunction with
honeypot operations to provide adaptability. The state–ac-
tion space formalism outlined in Section 4 is designed to
target automated and repetitive malware. Deployment strat-
egies should be re-examined to provide agility for new vari-
ants. A new framework is required to facilitate honeypot
development. In this respect, the contributions of this study
are the following:

• A new framework for honeypots is proposed. Existing tax-
onomies are assessed for relevance. Updated classes and
values are generated, incorporating adaptive and agile
functionality into honeypot development and deployment.

• Data captured on adaptive honeypots can be used to evalu-
ate reinforcement-learning algorithms and policies. Agile
honeypot deployment is facilitated by Q-learning and
SARSA (state, action, reward, state, action) under a variety
of policy configurations.

2 | PREVIOUS RESEARCH

2.1 | Honeypot evolution

Since their introduction in the 1990s, honeypots have
evolved to meet the changing landscape of cyber threats.
The number of deployments of bots and malicious code
targeting IoT end-devices has increased [5]. In 1992,
USENIX conferences presented work on captured cracker
activities [6]. Terminal machines were deployed to lure

unauthorized users and monitor their activity. Spitzner
defined a honeypot as a “security resource whose value
lies in being probed, attacked or compromised” [3].
Research on honeypots and honeynets has since increased.
Honeyd appeared in 2003 and is an easy-to deploy, low-
risk honeypot [7], which can safely deploy virtual hon-
eypots with different IP numbers. Honeyd is considered
a low-interaction honeypot (LiHP), gathering informa-
tion on the activities of an attacker in a virtual, confined
space. At that point in their evolution, honeypots could
be compromised and inadvertently partake in subsequent
attacks [8]. Terminology such as low, medium, and high
interaction came into honeypot parlance. LiHPs capture
base information such as IP addresses, port numbers, and
services. They will not permit the installation or execu-
tion of downloaded malware, and their implantation is
considered low risk. By contrast, HiHPs provide to the
attacker more scope for installing malware and exploring
the operating system and file structure. This has the ad-
vantage of maintaining the interest of attackers and cap-
turing more information on their behavior. HiHPs are real
systems, often mirroring live production systems. The ob-
vious disadvantage of a more interactive honeypot is the
potential for compromising the honeypot itself. This could
allow access to live production networks or participation
in subsequent attacks. Nepenthes [9] is a LiHP emulating
known vulnerabilities used by worms to spread across the
Internet. Argos [10] is a HiHP providing real system func-
tionality through the guest OS to capture zero-day attacks.
Virtualization enabled the low-risk deployment of HiHPs
[11], isolating attack traffic from connected hardware
and networks [12]. Owing to the popularity of honeypots,
comprehensive surveys of their technology have appeared,
with the most relevant being the most recent [13–15]. The
European Network and Information Security Agency is a
center of network and information security expertise for
European Union member states [16]. In 2012, it issued the
Proactive Detection of Security Incidents report, which
presented the test and evaluation results for over 30 ex-
isting honeypots. The report indicated difficulties with
honeypot usage, documentation, software stability, and
developer support, and made recommendations for the fu-
ture of honeypot development.

Emerging networking technologies have opened up
new directions in honeypot deployment. Real-time visual-
ization of global attacks is provided by Deutsche Telekom
Honeypot Project [17]. This honeypot-development com-
munity produced T-Pot, which is used for collectively
capturing and visualizing attacks on multiple well-known
honeypots. Other substantial advances in honeypot de-
ployment include the use of software-defined networking
to design and deploy flexibly next-generation honeynets
[18–21].

 | 967DOWLING et aL.

2.2 | Taxonomies

Zhang [22] introduced a taxonomy to standardize the devel-
opment and deployment of honeypots. In this taxonomy, the
function of honeypots as security mechanisms was classified
as follows: prevention, detection, reaction, or research. As
more devices were connected to the Internet, and threats ac-
cordingly evolved, Seifert introduced an updated taxonomy
in 2006 [23]. Six core classes were proposed, each with its
own set of values, as can be seen in Table 1. Technology
and malware as well as honeypot development have since
evolved. The heterogeneous nature of new devices coupled
with emerging attack vectors affects the relevance of this
taxonomy and is explored in Section 3. Further research has
classified honeypot operations and has proposed a taxonomy
to gain insight into honeynet architecture [24].

2.3 | Malware evolution

The development of the connected world of ARPANET and
personal computers in the 1980s provided increased oppor-
tunities to create malicious software. ARPANET terminals
infected by the Creeper worm posted a message and opened
new connections to other terminals [25]. Fred Cohen coined
the term virus in 1987, referring to a computer program that
could infect a computer, make a copy of itself, and spread to
other machines [26]. HTML facilitated the creation and ex-
pansion of the World Wide Web in the early 1990s. This ex-
pansion, in turn, facilitated the spread of malicious software.

Evolutionary web paradigms gave rise to new methods and
malware variants.

It is a great irony that a botnet provided a census of con-
nected routers on the Internet. The Carna botnet scanned
the IPv4 address space to generate an image of fixed-line
Internet connectivity [27]. This automated and repetitive
program globally propagated and compromised devices, pre-
dominately routers, to measure the extent of Internet access.
The original Creeper worm used an automated and repetitive
method to propagate and infect terminals. The human fac-
tor involves designing, coding, and launching the malware.
Infected machines may communicate with the command-and
control (C&C) center, which is also operated by a human
botmaster. Human naivety contributes to local compromise,
as end users unwittingly enable content, but global infec-
tion predominately uses automated and repetitive methods.
Botnets provide a mechanism for global propagation and
control of cyber-attack infection. They are defined as large
networks of compromised machines used to carry out further
attacks [28]. Real-time systems are employed to detect and
prevent malware infection. Firewalls, IDS, IPS, anti-virus,
and access lists are some of the commonly used and widely
accepted measures implemented to negate the effect of mal-
ware. Malware can exploit vulnerabilities at all layers of the
open-system interconnection model. For example, physical
wireless IoT infrastructure can be vulnerable to war-driving
[29], whereas application services such as SQL and HTML
are often targeted [30]. Coupled with this is the vast array
of potential attack vectors available to malware developers.
Every wired and wireless communication protocol becomes a
potential entry point. Brute-force and dictionary attacks gain
entry for subsequent exploitative software. From a security
perspective, one benefit of deploying honeypots is knowing
that all captured activity is malicious.

2.4 | Malware capture on honeypots

Honeypots actively seek to interact with cyber attacks by
simulating vulnerable Internet services and devices. This is
their raison d’être and can result in honeypot datasets rich
in repetitive, automated attack sequences [31]. The analyti-
cal value associated with datasets of this type is longitudinal,
providing spatiotemporal information on attack patterns [32].
Accordingly, honeypot detection tools and evasion tech-
niques are designed into malware [33]. For example, hon-
eypot hunter identifies honeypot functionality by generating
false services and observing their execution [34]. Successful
execution of these services identifies the connected device
as a honeypot. Virtual-machine (VM) detection techniques
identify the presence of virtual infrastructure by executing
simple kernel commands [35]. Conficker and Spybot scan for
the presence of a VM and terminate or modify their attack

T A B L E 1 Seifert's taxonomy for honeypot development

Class Value

Interaction level High

Low

Data capture Events

Attacks

Intrusions

None

Containment Block

Diffuse

Slow down

None

Distribution appearance Distributed

Standalone

Communication interface Network interface

Non-network interface

Software API

Role in multitier architecture Client

Serve

968 | DOWLING et aL.

methodology accordingly [36]. Consequently, honeypot ef-
fectiveness is compromised, and the quality of the resultant
dataset is reduced. Inadvertent termination of attack interac-
tion truncates the attack sequences captured by the honeypot.

A vast collection of LiHPs, MiHPs, and HiHPs simulat-
ing server and client services are available on multiple at-
tack vectors [14]. To coordinate this diversity, a versatile
virtual-honeynet framework focusing on the management
of automatic honeypot deployment has been proposed [37].
Predominately, LiHPs and MiHPs are simulations provid-
ing scripted responses. They are not at risk of being com-
promised and provide basic information for analysis, such as
IP addresses and timestamps. These can be deployed quickly
and require little maintenance. For better analysis, HiHPs are
real systems actively engaging with the attacks. These hon-
eypots gather additional information on attack code, C&C
communication, and downloaded files, and they require time
for their proper configuration, deployment, and maintenance.
Malware developers use obfuscation to avoid the detection
of installed software and C&C communications [38]. When
it was released, the Mirai botnet spawned multiple variants
with similar attack methods. A sample of the Mirai bot is
shown in Table 2. Mirai is the dominant malware type cap-
tured by the adaptive honeypot detailed in Section 4. Owing
to its dominance, it is used to standardize the optimization
of the adaptive honeypot in Section 5. The type of malware
captured will therefore depend on the interaction level, attack
vectors, and services configured on the honeypot. The latest
related survey found that most researchers tend to pose ques-
tions related to the attack source, target, and frequency [14].

Thus, significant deployment periods are required to capture
the necessary data and perform longitudinal analysis.

3 | CONCEPTUALIZED
FRAMEWORK

The classes from Seifert's taxonomy in Table 1 are evaluated
for relevance and are incorporated into the new framework.
Adaptive and agile honeypots can be developed using the
cyclic processes of (a) adaptive honeypot development, (b)
time-limited deployment and data capture, and (c) honeypot
optimization. The framework shown in Figure 1 facilitates
honeypot development, expedites the capture of complete
datasets, and ultimately leads to improved cyber forensics.

The top half of the framework uses five classes and one pro-
cess for adaptive honeypot generation. The functionality and
performance of the adaptive element are detailed in Section
4. The bottom half of the framework uses one class and two
processes to enable agile functionality. The functionality and
performance of the agile element are detailed in Section 5.

To mitigate against detection and inadvertent termination,
and to handle repetitive truncated datasets, it is incumbent on
honeypot developers and operators to implement alternative
measures. These measures provide the adaptability to learn
from attack interactions and the agility ensuring that honeypots
may be expeditiously deployed, optimized, and redeployed.
The existing taxonomy in Table 1 should be revisited to con-
sider the relevance of its classes and actions. The automated
and repetitive characteristics of malware affect this relevance,
and therefore the classes and values should be examined for
evolving malware threats. Even though some elements of this

T A B L E 2 Mirai bot sample [39]

Sequence Bot Command

1 /gweerwe323f

2 sudo/bin/sh

3 /bin/busybox

4 /gweerwe323f

5 mount

6 /gweerwe323f

7 echo -e ‘\x47\x72\x6f\x70’>//.nippon

8 cat//.nippon

-- ---------------

38 /gweerwe323f

39 cat/bin/echo

40 cd/

41 wget http:// <RedactedIP>/bins/usb_bus.x86-O
->usb_bus; chmod 777 usb_bus

42 chmod 777 usb_bus

43 ./usb_bus

44 /gweerwe323f
F I G U R E 1 Framework for adaptive, agile honeypot
development, and deployment

Adaptive
honeypot

Agile
honeypot

Stream captured
dataset through

HARM in controlled
environment

Data Capture:
• Time limited
• Intrusions
• Events
• Attacks

Containment:
Diffuse
Block

Slow down
None

Role in a multi-tiered
architecture:

Function (RFD, FFD)
Client
Server

Interaction Level:
High

Adaptive
Distribution Appearance:

Standalone
Distributed

Communications Interface:
Network interface

Software API

Integrate
Machine

Learning (ML)
into HiHP

Functionality

Time Limited
Deployment

and data
Capture

Optimise
Deployments
by evaluating

ML Algorithms
and Policies

 | 969DOWLING et aL.

taxonomy remain valid, updated classes and values should be
considered for a new framework for adaptive, agile honeypots.

• Interaction: Although LiHPs are available, they only
simulate Internet services and capture basic interactions.
Machine-learning functionality can be used to learn from
attack code interacting with the honeypot. This gives rise
to a new value for the “interaction level” class, namely,
adaptive. HiHPs with adaptive abilities should be deployed
for faster realization of attack sequences.

• Data capture: All automated interactions are captured by
honeypots. Longitudinal deployment results in datasets
containing repetitive data. The new value time limited
should be added to the “data capture” class to improve
cyber forensics. Adaptive honeypots prolong interaction
and capture more relevant information. Section 5 demon-
strates that adaptive datasets realize attack sequences faster.
Continuing to deploy an adaptive honeypot is redundant.
Optimization and redeployment ensure agility for such a
honeypot. Containment: The values for this class remain
highly relevant. Virtualization has abstracted the honeypot
from the underlying architecture and has mitigated the eth-
ical concerns regarding operations [8]. Virtual and cloud
platforms improve containment by providing mechanisms
that allow or restrict specific traffic types and protocols.

• Distribution appearance: Post compromise, malware will
scan the environment for other potential addresses and ser-
vices. New networking paradigms such as IoT will have a
highly different distribution appearance and will encoun-
ter evolving propagation methods. Malware could evolve
to exploit mesh networks or other non-traditional models.
The adaptive functionality of honeypots can respond so
that this interaction may safely be prolonged in a virtual-
ized environment.

• Communication interface: The non-network interface is a
redundant value. Automated and repetitive malware uses
Internet communication protocols and software applica-
tion programming interfaces (APIs) to propagate. Wired
and wireless Internet protocols ensure permanent access
to online services and are considered attack vectors. Non-
network interfaces on devices are not Internet facing.

• Role in a multitier architecture: Malware does not dis-
criminate post compromise. If a vulnerable device is ac-
cessible on an attack vector, malware will launch complex
code structures to compromise the underlying architecture,
regardless of whether the honeypot advertises client or
server services. An adaptive honeypot will learn the best
responses to realize all commands in an attack sequence.
With IoT deployments gathering pace, reduced- and full-
function devices give rise to complex mesh networks re-
quiring communication and gateways to Internet services.
Traditional client and/or server models should be expanded
to include function.

4 | ADAPTIVE HONEYPOT

The development of artificial-intelligence and machine
learning libraries heralded renewed interest in deploying
honeypots. Supervised learning is ideally suited to ret-
rospective analysis, as the algorithm can learn from or be
trained by existing data. This learning is then used to clas-
sify new occurrences. Some examples of classifiers used on
honeypot datasets are linear regression [40], naive Bayes,
support vector machines, decision trees, random forest and
nearest neighbor [41,42]. Similarly, unsupervised learn-
ing can organize data in different ways. Given a dataset, an
unsupervised model can analyze the data to find underlying
structures [43]. In reinforcement learning, an agent learns
through trial-and-error interactions with its environment.
The learning agent selects its actions based on previous
experiences. Reinforcement-learning problems can gener-
ally be modeled using Markov decision processes (MDPs).
Honeypots are examples of real-world problems in an in-
complete environment. Reinforcement-learning methods
facilitate the handling of MDPs, where the model can often
be unknown or difficult to approximate. The proposed hon-
eypot for automated, repetitive malware (HARM) involves
the integration of reinforcement learning into existing hon-
eypot technology to exploit the characteristics of malware.
The reinforcement-learning state–action space and reward
function are designed to increase the number of commands
from the attack sequence.

During the reinforcement-learning process, the agent can
select an action that exploits its current knowledge, or it can
opt for further exploration. Reinforcement learning provides
parameters so that the learning environment may determine
the reward and exploration values. Throughout deployment,
the honeypot is considered to be an environment augmented
with reinforcement-learning functionality. The honeypot
states in this environment are examined and changed using
bash scripts. The states are represented as bash commands,
such as wget and sudo. The reinforcement-learning agent per-
forms actions on these states, such as allow, block, or sub-
stitute the execution of the attack scripts. The environment
issues a reward to the agent for performing that action. The
repetitive nature of the automated attack sequences facilitates
learning over time. Eventually, the agent learns the optimal
policy � ∗, which maps the optimal action to be taken for each
state s. The learning process will converge as the honeypot is
rewarded for each attack episode. This is a temporal differ-
ence method for on-policy learning and uses the transition
from one state–action pair to the next so that the reward may
be derived. HARM uses SARSA for the implementation of
on-policy reinforcement learning (1). The reward policy Q
is estimated for a given state st and a given action at. The
environment is explored using a random component ε or ex-
ploited using the learnt Q values. The estimated Q value is

970 | DOWLING et aL.

updated through a received reward rt and an estimated future
reward Q(st+1, at+1) that is discounted (γ). A learning rate pa-
rameter is also applied (α). The policy is evaluated at the end
of each attack episode.

From a functional perspective, HARM has the following
elements:

• A Kippo honeypot modified to pass variables to the learn-
ing agent. Depending on the action selected by the learning
agent, the honeypot will allow, block, or substitute attack
commands.

• SARSA learning agent. This module receives the required
variables from HARM and calculates Q(st, at) using (1).
It determines the responses selected by HARM and learns
over time which actions yield the greatest amount of re-
ward. PyBrain is a machine-learning library and is used to
facilitate this reinforcement-learning functionality [44].

All external attack-command sequences interact with the
honeypot only. HARM was developed to generate rewards
on 75 states and is publicly available [45]. Figure 2 shows
the relationship between HARM elements, the captured
data, and the subsequent use and analysis of these data.
Both Kippo and PyBrain are written in Python, providing
seamless interaction. The attack commands are parsed as

the current state and passed to the PyBrain module, which
selects the action that will return the maximal value for
a given state. The PyBrain module is separate from the
Kippo honeypot and only communicates with the honeypot.
Previous approaches, such as Heliza [46] and RASSH [47],
have also used reinforcement learning to prolong the attack
duration. However, these approaches assumed human at-
tackers, and therefore they are inadequate for automated,
repetitive malware. HARM demonstrated improved learn-
ing and reward functionality over previous approaches
[48]. AmazonWeb Services EC2 was used to facilitate the
deployment of Internet-facing honeypots: a normal Kippo
honeypot and HARM. Kippo, PyBrain, MySQL, and other
dependencies were installed on the adaptive honeypot EC2
instance, which was accessible through SSH for a 30-day
period and immediately started to record repetitive mal-
ware activity. Initially, it logged dictionary and brute-force
attempts and then captured other malware traffic, includ-
ing a Mirai-like bot (Table 2). These commands represent
post-compromise interactions. This bot became the domi-
nant attacking tool over a 30-day period until over 100 dis-
tinct, repetitive attacks were recorded on both honeypots.
Other SSH malware interacted with the honeypot as well.
The novel state–action space formalism demonstrated im-
proved adaptive learning and an increase in the number of
commands captured by the honeypot compared with stan-
dard honeypots [48]. By further examining the malware
code interactions, it can be seen that the adaptive honeypot

(1)Q
(

st, at

)

←Q
(

st, at

)

+a
[

r+�Q
(

st+1, at+1

)

−Q
(

st, at

)]

.

F I G U R E 2 Adaptive elements and data capture in HARM

Attack command: Example: sudo /bin/sh

SSH
SSH

AWS EC2 Instance

Kippo
Honeypot

Eclipse Environment

Kippo
Honeypot

MySQL

database:

Q-values

Python script

to extract

Q-Values

Log files:

All honeypot

interactions
PyBrain

SARSA,

ε-greedy

Bash scripts to

extract attack

sequences

Cumulative

transitions

(Figs. 3 & 4)

state

Comparison

with previous

approaches

[46], [47], [48]

PyBrain

SARSA, Q-Learning

ε-greedy
State Dependent

Boltzmann Softmax

Dataset 2:

Attack commands

and sequences

Bash scripts to

extract attack

sequences

Log files:

All honeypot

interactions

Dataset 1:

Attack commands

and sequences

state
action

action

HARM

Optimisation

(Figs. 5, 6, & 7)

 | 971DOWLING et aL.

overcame detection techniques employed by malware [49].
When standard honeypots encounter these techniques, the
captured datasets contain truncated sequences of automated
and repetitive attacks. Figure 3 shows that, compared with
standard honeypots, the adaptive honeypot exhibited pro-
longed interaction and improved data capture.

5 | AGILE HONEYPOT

Data capture on HARM can be used to evaluate reinforcement-
learning algorithms and policies. Agile honeypot deployment
is facilitated by Q-learning and SARSA under a variety of
policy configurations. The adaptive ability of HARM results
in the capture of a dataset containing prolonged attack in-
teractions. Therefore, to ascertain whether continuing with
the deployment is relevant, the deployment period should be
considered. Optimizing and redeploying HARM may expe-
dite the capture of more relevant information.

5.1 | Deployment period

The diversity of malware was discussed in Section 2.3. To
further enhance the efficacy of honeypot technology, honey-
pot deployment should be considered. Longitudinal honey-
pots collect large datasets of repetitive attacks. These operate
for long periods capturing repetitive, automated, and incom-
plete attack sequences. Analyzing the dataset captured by the
honeypots provides further information (Dataset 1, Figure 2).
The standard honeypot only interacted with the first eight
commands in the Mirai attack sequence. This accounts for
the linear evolution of cumulative transitions in Figure 3. It
failed to realize the entire attack sequence. It should be noted
that the repetitive, automated variant had 44 commands in the
attack sequence (Table 2). Figure 4 shows the increases in
attack interactions and identifies the distinct attacks resulting
in this increase.

It is seen that the state–action space formalism for auto-
mated, repetitive malware rewarded the learning agent until

F I G U R E 3 Cumulative-transition comparison

4000

3000

2000

1000

0
28/11 01/12 04/12 07/12 10/12 13/12 16/12 19/12 22/12 25/12 28/12 31/12

Attack days

Tr

an
sit

io
ns

Adaptive
Kippo honeypot

F I G U R E 4 Realization of entire attack sequence

Attack days

Tr

an
sit

io
ns

Adaptive
Kippo honeypot

0
28/11 01/12 04/12 07/12 10/12 13/12 16/12 19/12 22/12 25/12 28/12 31/12

10

20

30

40

50

972 | DOWLING et aL.

all commands in the attack sequence were realized. The re-
alization of the entire attack sequence was affected by other
malware interactions on HARM. Moreover, the adaptive hon-
eypot completed its task after 19 days (17/12/2017), rendering
subsequent attack interactions and data collection redundant.
The frequency of the Mirai variant was uniform throughout
the duration of the deployments. The repetitive nature of the
bot provides the adaptive environment with the opportunity
to learn from each attack iteration. Continuing to operate the
adaptive IoT honeypot was unnecessary after the realization of
the entire attack sequence. For this short 30-day deployment,
approximately 45% of the period and dataset were redundant.

5.2 | Optimization

The command sequences from the online deployment can func-
tion as an input stream into an implementation of HARM on a

local, offline Eclipse environment. The input stream is parsed by
a Python action daemon to reflect malware interactions captured
by the online deployment. HARM was deployed on the Internet
using SARSA (1). Python allows the adaptive honeypot to im-
port and use SARSA or Q-Learning. It can also specify the ε-
greedy explorer component and the following explorer policies:

• Epsilon greedy: A discrete explorer that mostly executes
the original policy but occasionally returns a random
action.

• Boltzmann softmax: A discrete explorer that executes ac-
tions with a probability that depends on their values.

• State dependent: A continuous explorer that disrupts the
resulting action with added, distributed random noise.

The optimization process examines the performance of
HARM, configured with varying combinations of learn-
ing algorithms and explorer policies against the malware

F I G U R E 5 Performance of explorer policies using SARSA

Attack #

Tr

an
sit

io
ns

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

e-greedy = 0.05
e-greedy = 0.10
e-greedy = 0.15

Boltzmann softmax
State dependent

F I G U R E 6 Performance of explorer policies using Q-Learning

Attack #

Tr

an
sit

io
ns

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

e-greedy = 0.05
e-greedy = 0.10
e-greedy = 0.15

Boltzmann softmax
State dependent

 | 973DOWLING et aL.

variant in Table 2. ε-greedy was streamed three times with
parameter 0.05, 0.1, and 0.15. Therefore, for SARSA, the
dataset was streamed five times: once for Boltzmann soft-
max and state dependent, and three times for ε-greedy. The
process was then repeated for Q-Learning. The dataset
from Section 4 was streamed 10 times through the adap-
tive honeypot in a controlled Eclipse environment. The first
sequence (five times) with the learner set to SARSA, and
the second sequence with the learner set to Q-Learning.
The honeypot captured the interactions, actions, and num-
ber of commands in the Miraivariant attack sequence that
represented transitions from s to st + 1. These transitions
were collated, and HARM was reset after each streaming.
Figures 5 and 6 show the performance of the explorer pol-
icies for SARSA and Q-Learning, respectively. It can be
seen that SARSA and state dependent realized the entire
attack sequence after 38 iterations (Figure 5). Q-Learning
combined with Boltzmann softmax required 31 iterations
for the same task.

Two controlled experiments were further conducted with
the dataset. The best-performing combinations, namely
SARSA/state dependent and Q-Learning/Boltzmann-softmax
were configured on separate honeypots. These combina-
tions performed best against one particular malware variant.
The entire dataset was streamed through both combinations,
and the cumulative number of transitions was computed.
Figure 7 shows that the SARSA/state dependent combination
performed approximately 6% better than the Q-Learning/
Boltzmann softmax combination. This experiment highlights
the agility requirement in honeypot deployment. Although
Q-Learning/Boltzmann softmax realized the Miraivariant at-
tack sequence faster (31 vs 38 attack iterations), SARSA/state
dependent accumulated more transitions on the entire data-
set, beginning at attack 59 (Figure 7). Continuous monitoring
and analysis of honeypot datasets can provide new combina-
tions for redeployment.

6 | CONCLUSIONS

Cyber forensics should evolve with malware methods.
Technological advancements provide new attack vectors,
and honeypots should adapt accordingly. In this paper, we
proposed a new framework that uses machine-learning to
construct adaptive honeypots; moreover, we proposed deploy-
ment methods rendering these honeypots agile. Adaptability
and agility were demonstrated on a live honeypot dataset cap-
tured on an SSH attack vector. A number of surveys have
presented honeypot technology targeting malware on other
attack vectors. The development and operations of honey-
pots are based on older taxonomies designed to produce large
datasets over longitudinal deployments. This framework
can be applied to honeypots on other attack vectors. To be
relevant for cyber forensics, honeypot technology requires
an updated development framework that (a) is cognizant of
malware evolution, (b) can use new technology in honeypot
development to adapt to this evolution, and (c) can ensure
deployment and optimization agility. Honeypot datasets suf-
fer from repetition. Adaptive, agile honeypots can exploit the
characteristics of automation and repetition to expedite the
exposition of malware attack methods. The targeted Mirai bot
was the dominant attacking tool. Other malware was highly
infrequent throughout the deployment duration. Short adap-
tive deployments coupled with optimization and redeploy-
ment can improve the discovery of new malware variants.

CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

REFERENCES
 1. C. Kolias et al., Ddos in the iot: Mirai and other botnets, Computer

50 (2017), no. 7, 80–84.
 2. Kapersky, New iot-malware grew three-fold in h1 2018, 2018,

Available from: https://www.kaspe rsky.com/about /press -relea

F I G U R E 7 Comparison of SARSA/state dependent with Q-Learning/Boltzmann softmax

4000

3000

2000

1000

0

Tr

an
sit

io
ns

0 10 20 30 40 50 60 70 80 90 100
Attack #

SARSA with state dependent explorer
Q-learning with Boltzmann Softmax

https://www.kaspersky.com/about/press-releases/2018_new-iot-malware-grew-three-fold-in-h1-2018

974 | DOWLING et aL.

ses/2018_new-iot-malwa re-grew-three -fold-in-h1-2018 [last ac-
cessed October 2018].

 3. L. Spitzner, Honeypots: Catching the insider threat, in Proc. Annu.
Comput. Security Applicat. Conf. (Las Vegas, NV, USA), Dec.
2003, pp. 170–179.

 4. M. Oosterhof, Not capturing any mirai samples, 2017, Available
from: https://github.com/miche loost erhof /cowri e/issue s/411 [last
accessed February 2018].

 5. Y. M. P. Pa et al., IoTPOT: Analysing the rise of IoT compromises,
in Proc. USENIX Conf. Offensive Technol. (Berkeley, CA, USA),
Aug. 2015, pp. 1–9.

 6. S. M. Bellovin, Packets found on an internet, ACM SIGCOMM
Comput. Commun. Rev. 23 (1993), no. 3, 26–31.

 7. N. Provos, Honeyd-A virtual honeypot daemon, in Proc. DFN-
CERT Workshop (Hamburg, Germany), 2003, p. 4.

 8. B. McCarty, The honeynet arms race, IEEE Secur. Priv. 99 (2003),
no. 6, 79–82.

 9. P. Baecher et al., The nepenthes platform: An efficient approach
to collect malware, in Proc. Int. Workshop Recent Adv. Intrusion
Detection (Hamburg, Germany), Sept. 2006, pp. 165–184.

 10. G. Portokalidis, A. Slowinska, and H. Bos, Argos: An emulator
for fingerprinting zero-day attacks for advertised honeypots with
automatic signature generation, ACM SIGOPS Operat. Syst. Rev.
40 (2006), no. 4, 15–27.

 11. X. Jiang, X. Wang, and X. Dongyan, Stealthy malware detection
and monitoring through VMM-based out-of-the-box semantic view
reconstruction, ACM Trans. Inf. Syst. Security 13 (2010), no. 2,
12:1–28.

 12. I. Kuwatly et al., A dynamic honeypot design for intrusion detec-
tion, in Proc. IEEE/ACS Int. Conf. Pervasive Services (Beirut,
Lebanon), July 2004, pp. 95–104.

 13. N. Kambow and L. K. Passi, The need of network security, Int. J.
Comput. Sci. Inform. Technol. 5 (2014), no. 5, 60986101.

 14. M. Nawrocki et al., A survey on honeypot software and data anal-
ysis, 2016, Available from: https://arxiv.org/pdf/1608.06249.pdf
[last accessed June 2020].

 15. W. Fan et al., Enabling an anatomic view to investigate honeypot
systems: a survey, IEEE Syst. J. (2018), no. 99, 1–14.

 16. ENISA, Proactive detection of security incidents - Honeypots,
2012, Available from: https://www.enisa.europa.eu/publi catio ns/
proac tive-detec tion-of-secur ity-incid ents-II-honey pots [last ac-
cessed June 2020].

 17. Deutsche Telekom, Dtag community honeypot project, 2018,
Available from: http://dtag-dev-sec.github.io/ [last accessed
October 2018].

 18. S. Kyung et al., HoneyProxy: Design and implementation
of next-generation honeynet via SDN, in Proc. IEEE Conf.
Commun. Netw. Security (Las Vegas, NV, USA), Oct. 2017, pp.
1–9.

 19. W. Han et al., HoneyMix: Toward SDN-based Intelligent Honeynet,
in Proc. ACM Int. Workshop Security Softw. Defined Netw. Netw.
Function Virtualization (New Orleans, LA, USA), Mar. 2016, pp.
1–6.

 20. W. Fan and D. Fernández, A novel SDN based stealthy TCP con-
nection handover mechanism for hybrid honeypot systems, in Proc.
IEEE Conf. Netw. Softwarization (Bologna, Italy), July 2017, pp.
1–9.

 21. W. Fan et al., Honeydoc: An efficient honeypot architecture en-
abling all-round design, IEEE J. Sel. Areas Commun. 37 (2019),
no. 3, 683–697.

 22. F. Zhang et al., Honeypot: a supplemented active defense system
for network security, in Proc. Int. Conf. Parallel Distrib. Comput.,
Applicat. Technol. (Chengdu, China), Aug. 2003, pp. 231–235.

 23. C. Seifert, I. Welch, and P. Komisarczuk, Taxonomy of honeypots,
Victoria University of Wellington, School of Mathematical and
Computing Sciences, 2006, pp. 1–19.

 24. W. Fan, D. Zhihui, and D. Fernández, Taxonomy of honeynet solu-
tions, in Proc. SAI Intell. Syst. Conf. (London, UK), Nov. 2015, pp.
1002–1009.

 25. J. F. Shoch and J. A. Hupp, The “worm” programs—early experi-
ence with a distributed computation, Commun. ACM 25 (1982),
no. 3, 172–180.

 26. F. Cohen, Computer viruses, Comput. Security 6 (1987), no. 1,
22–35.

 27. E. Le Malécot and D. Inoue, The carna botnet through the lens of
a network telescope, in Proc. Foundations Practice Security (La
Rochelle, France), Oct. 2014, pp. 426–441.

 28. D. Dagon et al., A taxonomy of botnet structures, in Proc. Annu.
Comput. Security Applicat. Conf. (Miami Beach, FL, USA), Dec.
2007, pp. 325–339.

 29. J. Wright, Killerbee: practical zigbee exploitation framework, in
Proc. ToorCon Conf. (San Diego, CA, USA), Sept. 2009.

 30. B. Mphago et al., Deception in dynamic web application honey-
pots: Case of Glastopf, in Proc. Int. Conf. Security Manag., 2015,
p. 104.

 31. S. Dowling, M. Schukat, and H. Melvin, A ZigBee honeypot to as-
sess IoT cyberattack behaviour, in Proc. Irish Signals Syst. Conf.
(Killarney, Ireland), June 2017, pp. 1–6.

 32. Y.-Z. Chen et al., Spatiotemporal patterns and predictability of cy-
berattacks, PLoS One 10 (2015), no. 5, e0124472.

 33. P. Wang et al., Honeypot detection in advanced botnet attacks, Int.
J. Inf. Comput. Secur. 4 (2010), no. 1, 30–51.

 34. N. Krawetz, Anti-honeypot technology, IEEE Secur. Priv. 2 (2004),
no. 1, 76–79.

 35. T. Holz and F. Raynal, Detecting honeypots and other suspicious
environments, in Proc. Annu. IEEE SMC Inf. Assurance Workshop
(West Point, NY, USA), June 2005, pp. 29–36.

 36. S. Khattak et al., A taxonomy of botnet behavior, detection, and de-
fense, IEEE Commun. Survey Tutorials 16 (2014), no. 2, 898–924.

 37. W. Fan, D. Fernández, and Du Zhihui, Versatile virtual honeynet
management framework, IET Inf. Secur. 11 (2016), no. 1, 38–45.

 38. I. You and K. Yim, Malware obfuscation techniques: A brief sur-
vey, in Proc. Int. Conf Broadband, Wireless Comput., Commun.
Applicat. (Fukuoka, Japan), Nov. 2010, pp. 297–300.

 39. M. Antonakakis et al., Understanding the mirai botnet, in Proc.
USENIX Conf. Security Symp. (Berkeley, CA, USA), Aug. 2017,
pp. 1093–1110.

 40. E. Alata et al., Collection and analysis of attack data based on hon-
eypots deployed on the internet, in Quality of Protection, Springer,
2006, pp. 79–91.

 41. F. Vanhoenshoven et al., Detecting malicious URLs using machine
learning techniques, in Proc. IEEE Symp. Series Comput. Intell.
(Athens, Greece), Dec. 2016, pp. 1–8.

 42. S. Nanda et al., Predicting network attack patterns in SDN using
machine learning approach, in Proc. IEEE Conf. Netw. Function
Virtualization Softw. Defined Netw. (Palo Alto, CA, USA), Nov.
2016, pp. 167–172.

 43. P. Owezarski, Unsupervised classification and characterization of
honeypot attacks, in Proc. Int. Conf. Netw. Service Manag. (Rio de
Janeiro, Brazil), Nov. 2014, pp. 10–18.

https://www.kaspersky.com/about/press-releases/2018_new-iot-malware-grew-three-fold-in-h1-2018
https://github.com/micheloosterhof/cowrie/issues/411
https://arxiv.org/pdf/1608.06249.pdf
https://www.enisa.europa.eu/publications/proactive-detection-of-security-incidents-II-honeypots
https://www.enisa.europa.eu/publications/proactive-detection-of-security-incidents-II-honeypots
http://dtag-dev-sec.github.io/

 | 975DOWLING et aL.

 44. T. Schaul et al., Pybrain, J. Mach. Learn. Res. 11 (2010), 743–746.
 45. S. Dowling, An adaptive honeypot using reinforcement learning

implementation, 2017, Available from: https://github.com/sosdo w/
RLHPot [last accessed December 2018].

 46. G. Wagener et al., Heliza: talking dirty to the attackers, J. Comput.
Virol. 7 (2011), no. 3, 221–232.

 47. A. Pauna and I. Bica, Rassh-Reinforced adaptive ssh honeypot, in
Proc. Int. Conf. Commun. (Bucharest, Romania), May 2014, pp.
1–6.

 48. S. Dowling, M. Schukat, and E. Barrett, Improving adaptive honey-
pot functionality with efficient reinforcement learning parameters
for automated malware, J. Cyber Security Technol. 2 (2018), no. 2,
75–91.

 49. S. Dowling, M. Schukat, and E. Barrett, Using reinforcement learn-
ing to conceal honeypot functionality, in Proc. Joint Eur. Conf.
Mach. Learn. Knowl. Discovery Databases (Dublin, Ireland), Sept.
2018, pp. 341–355.

AUTHOR BIOGRAPHIES

Seamus Dowling Seamus Dowling is
a lecturer with Galway Mayo Institute
of Technology (www.gmit.ie). He spe-
cializes in networking, telecommuni-
cations, virtualization, and cyber secu-
rity. He initiated and manages the
Cisco Academy at GMIT, Mayo

Campus. He holds a BSc in Computing from Waterford
Institute of Technology, an MSc in Computing from Sligo
Institute of Technology, and a PhD from NUI Galway.
Previous research includes analyzing DDoS attacks and
developing intelligent honeypots for IoT malware. He has
worked in both the private and public sector in IT support,
administration, and management roles since 1993.

Michael Schukat Dr. Michael Schukat
is a lecturer and researcher in the
School of Computer Science at the
National University of Ireland, Galway.
His main research interests include se-
curity/privacy problems of connected
real time/time-aware embedded sys-
tems (ie, industrial control, IoT and

cyber-physical systems) as well as their communication/
time synchronization and cryptographic protocols.
Originally from Germany, Dr. Schukat studied computer
science and medical informatics at the University of
Hildesheim, where he graduated with an MSc (Dipl. Inf.)
in 1994 and a PhD (Dr. rer. nat.) in 2000. Between 1994
and 2002 he worked in various industry positions, where
he specialized in deeply embedded real-time systems
across diverse domains, such as industrial control, medical
devices, and automotive and network storage. To date,
Michael has published over 80 research articles.

Enda Barrett Dr. Enda Barrett is a
lecturer and research scientist at the
National University of Ireland, Galway.
In 2009, Enda completed an MRes in
Computer Science, where he devel-
oped a rule-based classifier to detect
cardiac arrhythmias from a three-lead

ECG signal. In 2013, Enda received his PhD in Computer
Science from NUI Galway. His PhD research investigated
the application of a subset of machine learning known as
reinforcement learning to automate resource allocation
and scale applications in infrastructure as cloud comput-
ing services. Upon completion of his PhD, Enda joined
Schneider Electric as a research engineer on a globally
distributed research team. In 2019, he was awarded fund-
ing by Science Foundation Ireland to develop ma-
chine-learning and computer-vision approaches to detect
individuals in noisy aquatic environments for assisting in
drowning prevention and search-and-rescue operations.
To date, Enda has published over 40 research articles, in-
cluding 12 journal papers, 4 patents, and 25 conference/
workshop papers.

https://github.com/sosdow/RLHPot
https://github.com/sosdow/RLHPot
http://www.gmit.ie

