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1  |   INTRODUCTION

The Internet of Things (IoT), first proposed by Ashton [1], 
describes the future scenario where daily physical objects 
will be connected to the Internet and be able to identify 
themselves to other devices. The IoT is a new revolution of 
the Internet and things or objects, such as radio frequency 
identification tags, sensors, actuators, and mobile phones, 
which through unique addressing schemes can interact with 
each other and cooperate with their neighbors to reach typ-
ical goals [2]. To realize the IoT network paradigm, a large 
number of IoT devices must be deployed. However, with 
the increasing number of IoT devices, the amount of spectra 

for these devices is insufficient. Moreover, owing to the in-
terference owing to spectrum overuse by IoT devices, the 
transmission performance will be degenerated significantly. 
Therefore, it is highly import to improve the spectrum utili-
zation in an IoT network [3].

1.1  |  Related studies

M. Zhang and others presented the concept of cognitive IoT 
(CIoT) by integrating intelligent thoughts into the IoT to ad-
dress the lack of intelligence, modeled the CIoT network to-
pology, and designed cognition process–related technologies 
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Internet of Things (IoT) is considered the future network to support wireless commu-
nications. To realize an IoT network, sufficient spectrum should be allocated for the 
rapidly increasing IoT devices. Through cognitive radio, unlicensed IoT devices ex-
ploit cooperative spectrum sensing (CSS) to opportunistically access a licensed spec-
trum without causing harmful interference to licensed primary users (PUs), thereby 
effectively improving the spectrum utilization. However, an open access cognitive 
IoT allows abnormal IoT devices to undermine the CSS process. Herein, we first 
establish a hard-combining attack model according to the malicious behavior of fal-
sifying sensing data. Subsequently, we propose a weighted sequential hypothesis test 
(WSHT) to increase the PU detection accuracy and decrease the sampling number, 
which comprises the data transmission status-trust evaluation mechanism, sensing 
data availability, and sequential hypothesis test. Finally, simulation results show that 
when various attacks are encountered, the requirements of the WSHT are less than 
those of the conventional WSHT for a better detection performance.
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[4]. Inspired by the human cognition process, Wu and oth-
ers [5] presented an operational framework for CIoT, which 
characterized fundamental cognitive tasks and empowered 
the current IoT with a “brain” for high-level intelligence. 
Ploennigs and others proposed a CIoT architecture [6] that 
combined the strength in scalability provided by a recently 
developed IoT architecture with self-learning and self-adap-
tation capabilities obtained from cognitive systems.

Furthermore, [4‒6] considered cognitive capability to 
gradually enrich the definition of the IoT and developed a 
brain-empowered CIoT paradigm involving key enabling 
techniques. However, the spectrum shortage problem has yet 
to be solved in the previous IoT network. Hence, cognitive 
radio (CR) is envisaged as a promising solution to improve 
spectrum utilization by sharing a licensed spectrum. CR has 
been defined by Mitola and later by Haykin as an intelligent 
wireless communication system that is aware of its surround-
ing environment and uses the methodology of understand-
ing by building to learn from the environment and adapts 
its internal states based on new statistical variations [7]. 
Integrating CR technology with the IoT network allows IoT 
devices to sense spectrum resources that are underutilized by 
primary users (PUs), which is considered as complementary 
to existing efforts [3].

The main goal of [8] and [9] is to discuss how CR tech-
nology can be useful for the IoT paradigm. Kim proposed 
using CR techniques for IoT-based systems to manage the 
shortage of spectrum for IoT devices [10]. Zaheer and oth-
ers provided a survey of the existing decision theoretic 
models and their usage for CIoT [11]; furthermore, an ar-
chitectural CIoT framework was proposed to discuss the 
open issues and solution for potential challenges emerging 
in the CIoT research. Considering that spectrum decision 
by unlicensed users of CR is important in CR-based IoT 
in 5G and beyond networks, Akhtar described a scientific 
supported spectrum decision support framework for CR 
networks [12], in which the goal is the same as that re-
ported in [8] and [9].

Although a comprehensive study on recent advances in CR 
technology for IoT has been provided [8‒12], many questions 
are yet to be explored, such as the attack and defense involved 
in CIoT. In [13], Chen and others investigated the vulnerability 
of the IoT infrastructure under intentional attacks by relating 
network resilience to percolation-based connectivity. They 
proposed a fusion-based defense mechanism to mitigate the 
damage caused by such attacks and applied the results of game 
equilibrium (the attack and defense strategy as a zero-sum 
game) to evaluate the effectiveness of the proposed mecha-
nism. Unfortunately, only a general theoretic framework for 
network robustness analysis and enhancement is provided and 
defense against specific attacks failed [13]. In [14], Zhang and 
others surveyed the Sybil attack and defense schemes in the 
IoT. They suggested several research issues regarding Sybil 

defense and mentioned that further research and development 
related to IoT is still challenging. In [15], Li and others ad-
dressed the physical layer security issue in CIoT networks 
by employing cooperative jamming. They proposed a novel 
cooperative jamming scheme, in which a secondary user is 
arbitrarily assigned as the helper to confound the eavesdropper 
by sending jamming signals. However, if the helper is a ma-
licious node, the system security will be severely threatened. 
Therefore, the untrusted helper node should be considered 
thoroughly. In [16], Salameh and others presented a probabi-
listic-based channel assignment algorithm for IoT-based cog-
nitive radio networks (CRNs) with time-sensitive traffic under 
jamming attacks. In [17], Lin and others proposed a protocol 
and a method of spectrum management that can guard against 
typical types of security threats despite the limitations of 
local processing. With a hierarchical CIoT architecture, they 
incorporated the strengths of CR and the physical properties 
of a device to improve the performance of a CRSN and re-
solved the primary user emulation attack (PUEA) problem. 
However, using a large number of IoT devices worsens the 
spectrum scarcity problem significantly. The usable spectrum 
resources are almost entirely occupied; therefore, the increas-
ing demands of radio access from IoT devices cannot be sat-
isfied. Both [16] and [17] primarily focused on the resource 
allocation algorithm to defend against Sybil attacks, jamming 
or PUEAs for CIoT, and subsequently ignored the spectrum 
sensing problem; in fact, spectrum sensing is critical to solve 
the spectrum scarcity problem.

Additionally, extensive research has been performed to 
provide a structured and comprehensive overview on the se-
curity of IoT from different aspects, such as, [18‒31] and the 
references therein.

1.2  |  Motivation and contributions

Although the security of IoT has been extensively dis-
cussed and addressed, some of which pertain to the cur-
rent state of research and future directions of IoT security 
requirements, strong scalability concerns still exist, espe-
cially in spectrum sensing security. Most of the previously 
conducted research failed to consider the peculiarities of 
such services, such as spectrum sensing; therefore, the 
high bandwidth demand to serve massive numbers of IoT 
devices may result in spectrum scarcity for IoT applica-
tions. Such limitations fuel the motivation for providing 
a broader and more complete view of CIoT security chal-
lenges in spectrum sensing.

To the best of our knowledge, a sequential probability 
ratio test design for spectrum sensing in CIoT networks 
had not been studied. Local spectrum sensing by a single 
IoT device is often inaccurate as the channel often experi-
ences fading and shadowing effects; therefore, cooperative 
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spectrum sensing (CSS) has been proposed to overcome 
this problem. Although CSS performed by several IoT de-
vices can provide a more reliable decision regarding the 
PUs, abnormal IoT devices (AIDs) may appear, which is 
disadvantageous. During spectrum sensing, AIDs alter 
the cooperative decision by transmitting false signals, 
thereby resulting in the incorrect prediction of PU pres-
ence. Such attacks are known as sensing data falsification 
attacks (SDFAs). During SDFAs, the traditional encryption 
method (such as symmetric and asymmetric ciphers) may 
not be suitable for CIoT networks, as these networks are 
composed of low-profile devices.

Hence, we design a weighted sequential hypothesis test 
(WSHT) for CIoT to secure CSS and decrease the number 
of samples required at the fusion center (FC). By analyzing 
the malicious behavior occurring during CSS, we formulate 
a hard-combining SDFA model. According to the periodic 
spectrum sensing frame structure, we formulate a data trans-
mission status-based trust evaluation mechanism instead of 
the global decision-based trust evaluation mechanism to eval-
uate the sensing data availability. Furthermore, we integrate 
the sensing data availability into the weight of the sequen-
tial hypothesis test, and propose a WSHT to defend against 
SDFAs in CIoT.

The remainder of the paper is structured as follows. 
Section 2 provides the system model including the spec-
trum sensing and SDFA models. Section 3 formulates the 
WSHT, including the data transmission status-based trust 
evaluation mechanism, sensing data availability, and se-
quential hypothesis test. Performance evaluation is pre-
sented in Section 4. Finally, conclusions and future work 
are presented in Section 5.

2  |   SYSTEM MODEL

A generic CIoT is typically structured into four layers: ap-
plication, transport, perception, and sensing layers, as shown 
in Figure 1. The application layer employs intelligent com-
puting technologies (eg, data mining and cloud computing) 
to extract valuable information from processing volumi-
nous data and provides an interface between users and other 

applications. The transport layer manages network opera-
tions, whereas the perception layer collects information [26]. 
The three layers above constitute a basic IoT architecture; 
however, because a spectrum bandwidth is not available, 
an IoT network cannot be realized. Hence, combined with 
CR technology, the sensing layer is proposed to provide an 
empty spectrum bandwidth for data delivery in three layers 
of the IoT architecture.

As shown from the four-layered CIoT architecture above, 
CIoT security should include the security of the entire sys-
tem crossing all four layers mentioned previously. Because 
the sensing layer is the fundamental brick of the upper three 
layers, the focus of this study is to solve the security of the 
sensing layer. In this section, we present the spectrum sensing 
and SDFA models in the sensing layer.

2.1  |  Spectrum sensing model

In the sensing layer, strict requirements regarding the spec-
trum sensing accuracy are set to avoid collisions with the PU. 
However, it is extremely difficult to attain such an accuracy by 
individual spectrum sensing owing to shadowing and multipath 
fading encountered by IoT devices. Once the PU signal experi-
ences deep fading or blocked by obstacles, the power of the 
received PU signal at the IoT devices may be too weak to be 
detected. Hence, CSS is proposed; the CSS performance will 
be improved by utilizing independent fading and multiple-user 
diversity. In the CSS architecture, all the participating IoT de-
vices forward their observations regarding the presence or ab-
sence of the PU to the FC, which makes the global decision 
regarding whether the PU is transmitting. The channel between 
IoT devices and the FC is an error-free communication channel.

Based on the CSS process, we consider an infrastruc-
ture-based CIoT network comprising a PU, FC, and N IoT 
devices, wherein the AID ratio is �. Figure 2 illustrates an 
example of time slot assignment for IoT devices, where H0 
and H1 represent the hypothesis regarding the absence and 
presence of the PU, respectively. In each sensing frame, N 
IoT devices independently sense the usage status of a partic-
ular spectrum channel in the sensing slot and send individ-
ual sensing results to the FC. In the processing slot, the FC 
makes the global decision regarding the channel status based 
on all received reports and subsequently sends its decision 
results to IoT devices. Subsequently, the FC makes the global 
decision via a specific rule and broadcasts a message (the 

F I G U R E  1   A generic CIoT architecture
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presence or absence of the PU) to the IoT devices; if the FC 
declares the presence of a PU, one of N IoT devices may start 
to transmit data in the transmission period over this channel. 
When the FC declares the absence of a PU, the IoT devices 
must be switched to sense the availability of another channel 
in the next sensing frame.

2.2  |  Sensing data falsification attack model

The most vigorous and open facet of CIoT is that CRs are 
pregnable to multifarious malevolent attacks in the sensing 
layer. In CSS, the nature of aggregating data allows AIDs 
to launch SDFAs by sending false spectrum sensing data. 
For convenience, spectrum sensing data are abbreviated as 
sensing data hereinafter. The AIDs attempt to manipulate the 
FC into producing a global decision regarding the spectrum 
occupancy. This not only renders the spectrum scarcity prob-
lem more serious, but also creates security risks to the net-
work. The reliable detection of the PU is important in CIoT. 
However, it becomes challenging when the AIDs share false 
sensing data in CSS, as shown in Figure 3.

An SDFA on the CIoT infrastructure can be categorized 
into two types according to its purpose: (a) mis-detection 
attack and (b) false alarm attack, as shown in Figure 4. A 
mis-detection attack exploits a cooperative opportunity to in-
crease the mis-detection probability (falsifying the sensing 
result 1 into 0); therefore, the AIDs allure other IoT devices 
to access the channels in use and cause an excessive interfer-
ence to the PU. In contrast to causing a harmful interference 
to the primary network, a mis-detection attack aims to pre-
vent other normal IoT devices (NIDs) from using the existing 

white space by increasing the false alarm probability (falsify-
ing the sensing result 0 into 1) such that the AIDs can exclu-
sively occupy the idle spectrum.

To evaluate the effect of the SDFA on CIoT, we adopt both 
the mis-detection and false alarm probabilities as the local per-
formance metric. Furthermore, the mis-detection probability 
Pm,i which represents the IoT device, outputs the sensing re-
sult that the PU is absent when the PU is present, and the false 
alarm probability Pf ,i, which represents the IoT device, outputs 
the sensing result that the PU is present when the PU is absent 
are assumed to be the same for every IoT device irrespective 
of whether they are normal or abnormal, that is, Pm,i =Pm and 
Pf ,i =Pf , i = 1, 2, …, N. Otherwise, the probability of the false 
alarm attack and the mis-detection attack are denoted as �1 and 
�0, respectively. Subsequently, the mis-detection probability PA

m
 

and the false alarm probability PA
f
 of the j th AID (PA

m,j
=PA

m
 and 

PA
f ,j
=PA

f
, j=1, 2, ..., �N) are given by

and

As shown in (1) and (2), when �0 =1 or �1 =1, the SDFA 
model naturally degenerates into two simple types of attack: 
always-no attack and always-yes attack; when �0 =1 and �1 =1,  
another special attack type appears, that is, always-false at-
tack. In detail, the always-no, always-yes, and always-false 
attacks represent the AID always reporting the absence of 
the PU, the presence of the PU, and the PU status, respec-
tively, as opposed to the sensing result to the FC regardless of 
the true sensing result. If those AIDs launch a simple attack 
characteristic, they can be easily identified by the decision 
fusion criteria at the FC. In fact, such a type of always attack 
has been extensively studied in [32‒38]; the defense schemes 
in these references have shown satisfactory performance in 
some settings; however, when confronting the sophisticated 
attack probability (ie, a pair of attack probability �1 and �0 
varying from 0 to 1), most of them are bound to fail.

3  |   WEIGHTED SEQUENTIAL 
HYPOTHESIS TEST

AIDs can render the FC incapable of making a decision by 
completely blinding the system. In this case, the FC will 
be unable to decide on a particular decision regarding the 
presence of the phenomenon, and the performance of the FC 
cannot be better than a random guess of the state of channel. 
A critical value of 50% of the AIDs can completely blind the 
FC; more details regarding the blind scenario are available 
in [39]. In fact, a high AID ratio case has been ignored in 
most previous studies; however, this is a fundamental issue 

(1)PA
m
=Pm(1−�0)+ (1−Pm)�0

(2)PA
f
=Pf (1−�1)+ (1−Pf )�1.

F I G U R E  3   Cooperative spectrum sensing in the presence of 
AIDs

F I G U R E  4   Sensing data falsification attack model
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involved in CSS. Therefore, we consider a sequential prob-
ability ratio test-based decision fusion criterion comprising 
the data transmission status-based trust evaluation mecha-
nism, sensing data availability, and sequential hypothesis 
test that is robust against various SDFAs.

3.1  |  Data transmission status-based trust 
evaluation mechanism

The trust concept is used in various contexts and with differ-
ent meanings [24]. When a number of devices communicate 
in an uncertain network environment, trust is important for 
establishing a secure communication between things. Trust 
in the system from the devices’ perspective should be consid-
ered in CIoT. To gain device trust, an effective mechanism 
should be established for defining trust in a dynamic and col-
laborative CIoT environment [21].

In the spectrum sensing behavior, the main objectives of 
trust research are as follows: first, the conception of a new trust 
evaluation mechanism for spectrum sensing behavior; next, the 
implementation of the trust evaluation mechanism. A good pol-
icy framework is desired to incorporate the evaluated trust level 
and current threat level prior to decision making [21]. Before 
proceeding with the description of our trust evaluation mech-
anism, a brief introduction to the global decision-based trust 
evaluation mechanism is provided, as shown in Figure 5.

Each IoT device is assigned with a trust value; the FC utilizes 
the global decision to verify the consistency of the local deci-
sion results from the IoT devices in each time slot; subsequently, 
the trust value is renewed. When the local decision is consistent 
with the global decision, the trust value will be increased by one; 
otherwise, it will be decreased by one. Therefore, according to 
the global decision-trust evaluate mechanism, the trust value of 
the ith IoT device at the kth time slot is described as follows:

where li(k) is the local decision; g(k) is the global decision.

The global decision-based trust evaluation mechanism has 
been adopted extensively in previous studies. In fact, this trust 
evaluation mechanism can cope with a few AIDs; however, 
when a large number of AIDs exist in CIoT, it becomes un-
reliable if the global decision is still used as a benchmark to 
verify the consistent of the local decision, because the global 
decision made by the FC may be compromised. Hence, it is 
indispensable to devise a robust trust evaluation mechanism 
that can verify the consistency.

Unlike the global decision-based trust evaluation mecha-
nism, the main idea of our proposed trust evaluation mech-
anism is inspired by the periodic spectrum sensing frame 
structure, we utilize the data transmission status of an IoT 
device to determine whether the local decision is correct. 
Next, we introduce this trust evaluation mechanism in two 
cases.

3.1.1  |  Case I

In Case I, when the FC declares the global decision as idle 
and broadcasts this message to the IoT devices at the process-
ing slot, in accordance with the entire process of CSS and 
periodic spectrum sensing frame structure, at least one IoT 
device will be allocated to the channel for data transmission 
at the data transmission slot. At this time, if the delivery of 
data transmission occurs from the IoT device at the channel, 
then the global decision is correct; meanwhile, if collisions 
with the primary network occur, then the global decision is 
incorrect.

3.1.2  |  Case II

In Case II, when the FC announces that the global decision is 
busy, typically, all IoT devices must switch to another chan-
nel and continue sensing; in other words, data transmission 
should not occur from the IoT device in the channel, and the 
global decision is regarded as correct. However, if data trans-
mission occurs from the IoT device, then the global decision 
is incorrect.

In general, we can use the data transmission status d(k) 
of the IoT devices instead of the global decision g(k) to 
verify the consistency of the local decisions. The entire 
data transmission-based trust evaluation mechanism is 
illustrated in Figure 6. In addition, from the implementa-
tion of data transmission-based trust evaluation, the FC 
or a trusted node can be adopted to monitor the procedure 
above. However, it is noteworthy that the data transmission 
status is only used as a benchmark to verify the consistency 
of the local decisions and is not a substitute for the global 
decision as an indicator of whether the IoT device has ac-
cessed the channel (because data transmission status-based 

(3)i(k)=i(k−1)+ (−1)li(k)+g(k)

F I G U R E  5   Global decision-based trust evaluation mechanism
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trust evaluation mechanism is executed at the end of the 
global decision-making).

3.2  |  Sensing data availability

To protect the sensing data integrity, security countermeas-
ures are divided into two main categories: preventive and re-
active. Preventive countermeasures seek to prevent intrusion 
attempts by directly protecting data and communications. 
Examples of preventive security include cryptographic pro-
tocols to authenticate the identity of devices and authorize 
users to access data. Authentication and authorization pro-
tocols ensure that the FC receives data streams only from 
trusted devices. They prevent an adversary from introducing 
malicious data to the FC via a rogue, unverified device [30].

Reactive countermeasures aim to mitigate failures in preven-
tive security and ensure that the system continues to operate ap-
propriately even when the preventive security fails. Meanwhile, 
preventive security protects CIoT networks by rendering it 
more difficult for an adversary to compromise data, and reac-
tive security ensures that systems operate resiliently even when 
a number of IoT devices become hijacked. Reactive counter-
measures include attack detection and identification algorithms 
for cyberphysical systems. The objectives of attack detection 
and identification are to determine if the measurements from 
any of the IoT devices have been altered by an adversary and to 
identify IoT devices that have been compromised, respectively. 
After detecting or identifying an attack, the system may per-
form a corrective action to mitigate the damage [30].

Following reactive countermeasures, we utilize the con-
sistency verification of the local decision to evaluate the 
sensing data availability. After the kth sensing slot, the con-
sistency ci(k) of the ith IoT device is empirically defined as

As shown in (4), ci(k) is measured only when i(k)>0;  
in other words, the IoT device correctly detects the PU 

status at least ⌈k∕2⌉ times in k sensing frames; subse-
quently, its consistency can be measured. The goal is to 
mitigate the effect of abnormal sensing data on the global 
decision.

Next, the sensing data availability must be measured ac-
cording to the consistency. Here, we use a new weight allo-
cation to evaluate the sensing data availability, wherein the 
weight is a function with regard to the consistency and is 
presented as

In fact, the sensing data availability can be expressed as 
various functions involved in the consistency ci(k). However, 
it needs to comply with the basic principle, that is, the higher 
the consistency, the higher is the sensing data availability, ex-
cept that the slope of the sensing data availability increases 
with increasing consistency in different functions, which af-
fects the global performance and sample size. However, this 
is beyond the scope of this paper.

3.3  |  Sequential hypothesis test

In the typical decision fusion criteria (ie, voting rule, 
Neyman–Pearson detection, and Bayesian test), the same 
methodology is employed for a multiple but fixed number 
of observation samples. In many practical situations, how-
ever, observations are collected sequentially and more in-
formation becomes available as time progresses. In such 
cases, we may wish to process the observations sequen-
tially and make a global decision as soon as we are satisfied 
with the decision quality or detection performance. The aim 
is to perform additional observations only if they are neces-
sary [40].

In the sequential hypothesis test process, after each sens-
ing frame, the FC computes the likelihood ratio and com-
pares it with two thresholds. Either it decides on one of the 
two hypotheses or it decides to take another observation. The 
main advantage of the sequential hypothesis test is that it 
requires, on the average, fewer observations to achieve the 
same probability of error performance as a fixed sample size 
test. This advantage is attained at the expense of additional 
computation [40].

Hence, the likelihood ratio is computed and compared 
with the lower threshold �0 and the upper threshold �1, 
which are determined by the specified values of Pf  and Pm, 
respectively. If the likelihood ratio is greater than or equal 
to �1, the FC decides that H1 is present. If the likelihood 
ratio is less than or equal to �0, then the FC decides that H0 
is present.

(4)ci(k)=

{
0, i(k)≤0,

i(k)

k
, i(k)>0.

(5)wi(k)=

�
0, i(k)≤0,√

ci(k), i(k)>0.

F I G U R E  6   Data transmission status-based trust evaluation 
mechanism
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To secure CSS, we integrate the sensing data availability 
into the weight of the likelihood ratio; subsequently, the deci-
sion variable can be described as.

where M is the required number of samples at the kth sensing 
frame.

As illustrated in Figure 7, the procedure of the sequential 
hypothesis test is described as follows:

If ΛM(k)≥�1, the FC decides H1;
If ΛM(k)≤�0, the FC decides H0;
If 𝜂0 <ΛM(k)<𝜂1, the FC takes another decision sample, 

where �0 =Pm

/(
1−Pf

)
 and �1 =

(
1−Pm

)/
Pf

.
However, it is noteworthy that when sequentially calcu-

lating the likelihood ratio of the FC, the IoT device with a 
high trust value preferentially calculates the likelihood ratio 
such that the negative effect of abnormal sensing data on the 
global decision can be further mitigated.

After the FC decides that H0 is present by the sequential hy-
pothesis test, the IoT devices are allowed to access the idle chan-
nel. During resource allocation, the AID may selfishly occupy 
the channel for transmitting abnormal data; therefore, we should 
consider a fair scheduling strategy, that is, the IoT device with a 
high trust value has priority access to the idle channel. This is 
both a punishment for malicious spectrum sensing behavior and 
a reward for normal spectrum sensing behavior. Therefore, it is 
not necessary to take the same disposal as the previous secure 
CSS methods to remove the AIDs after they are identified, be-
cause a real AID cannot benefit from an SDFA and may not con-
tinue to launch an attack. However, for other NIDs, it can avoid 
being mistakenly eliminated owing to the effect of the fundamen-
tal characteristics of dynamically changed wireless channels.

4  |   SIMULATION RESULTS AND 
DISCUSSIONS

In this section, we corroborate the effectiveness and robustness 
of our proposed data transmission status-based trust evaluation 

mechanism, as evidenced by the comparison-based simulation 
results. Additionally, we compare the performance of the con-
ventional weighted sequential hypothesis test (CWSHT) and 
WSHT through in-depth numerical simulations under various 
scenarios. Here, we offer a brief overview of the CWSHT [32]. 
The decision variable of the CWSHT is

where

Hence, it can be concluded that the CWSHT and WSHT ex-
hibit the following differences: (a) trust evaluate mechanism—
the CWSHT adopts the global decision-based trust evaluation 
mechanism while the WSHT adopts the data transmission sta-
tus-based trust evaluation mechanism to solve the unreliability of 
the global decision as a benchmark for verifying local decisions; 
(b) the weight allocation—the CWSHT selects the threshold—5 
to evaluate the sensing availability, while the WSHT utilizes the 
consistency verification of local decisions to evaluate the sens-
ing data availability to filter unreliable sensing results caused 
by the shadowing characteristic and multipath effects; (c) the 
hypothesis test—each AID’s likelihood ratio is randomly calcu-
lated into the decision variable when the CWSHT proceeds with 
the hypothesis test; however, the WSHT computes each AID’s 
likelihood ratio in a trust value ranking order to reduce the num-
ber of samples and improve the sensing efficiency.

For comparison, we focus on the global performance: detec-
tion accuracy Qd and average number of samples Qs. The detec-
tion accuracy Qd indicates the percentage of correct PU detection 
in 1000 sensing frames. The average number of samples refers 
to that the FC must collect from each neighbor to make a global 
decision; it measures the overhead of a particular decision fusion 
criterion [32]. For decision fusion and the fixed number likeli-
hood ratio test, the number of samples is always N. The number 
of samples changes only for the sequential hypothesis test.

The values of important simulation parameters are as follows: 
the number of collaborative IoT devices N is 100, the local spec-
trum sensing performance Pf  and Pm are set to 0.1, Pf =10−3, 
and Pm =10−3 in the sequential hypothesis test. Otherwise, all 
numerical results are simulated in 1000 sensing frames.

4.1  |  Comparison of trust 
evaluation mechanism

We first simulate the (average) trust value of the NID and 
AID under the global decision-based trust evaluation and 
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F I G U R E  7   Weighted sequential hypothesis test

0H

1H

Take another decision sample

Calculating
likelihood ratio

Local decision in trust 
value descending order

1      0     0      1     0      1. . .

FC



      |  983WU et al.

data transmission status-based trust evaluation mechanisms. 
Considering that extensive studies have provided a satisfac-
tory performance when the AIDs represent the minority, we 
assume the AID ratio � to be 0.8 and the probability of the hy-
pothesis test H0 to be 0.5. Figure 8 illustrates the trust value 
when �1 =�0 =0.5; as shown, the trust values of the NID 
and AID are relatively close in two types of trust evaluation 
mechanisms, and that it is easy to implement AID identifica-
tion by the difference in the trust value.

As the attack probability increases, that is, �1 =�0 =1, 
the trust value in the global decision/data transmission sta-
tus-based trust evaluation mechanism changes differently, 
as shown in Figure 9. Evidently, in our proposed data trans-
mission status-based trust evaluation mechanism, the signif-
icant difference in the trust between the NID and AID values 
remains unchanged, while it is completely reversed in the 
global decision-based trust evaluation mechanism. In other 
words, if the global decision-based trust evaluation mecha-
nism is applied into the CSS algorithm, the NID/AID can be 
regarded as the AID/NID. This is because the global decision 
is compromised when the attack probability is sufficiently 
large and the attack population sufficient.

4.2  |  Effect of always attack

Owing to recent advances in secure CSS methods, signifi-
cant effort has been expended to combat always attacks. 
Before discussing sophisticated attacks in detail, we begin 
with an in-depth investigation on always attacks, includ-
ing always-yes, always-no, and always-false attacks. To 
build a fair comparison framework, we integrate the previ-
ous sequential hypothesis test (represented by [32‒36,38]) 
to establish the CWSHT and vary the AID ratio α from 0 
to 0.9.

Figures 10 and 11 display the detection accuracy and 
average number of samples of the CWSHT and WSHT in 
the presence of an always attack, respectively. As shown in 
Figure 10, the CWSHT and WSHT can maintain a 100% de-
tection accuracy in the presence of a relatively low AID ratio; 
however, as the AID ratio increases, the detection accuracy 
of the CWSHT decreases to varying degrees in either the al-
ways-yes, always-no, or always-false attack, while our pro-
posed WSHT still maintains a good detection accuracy until 
the AID ratio reaches 80%, where the detection accuracy only 
slightly decreases but is still impressive.

Figure 11 shows the average number of samples required 
for the CWSHT and WSHT. It is clear that under three types 
of always attacks, the sampling number of the WSHT re-
mains at six even with an increasing AID ratio. In contrast 
to the CWSHT, the number of samples at the beginning in-
creases with the AID ratio; however, after the AID ratio has 

F I G U R E  8   Trust value in the global decision/data transmission 
status-based trust evaluation mechanism when �1 =�0 =0.5
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F I G U R E  9   Trust value in the global decision/data transmission 
status-based trust evaluation mechanism when �1 =�0 =1
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F I G U R E  1 0   Detection accuracy of CWSHT and WSHT in the 
presence of always attack
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reached a certain level, the number of samples required starts 
to decline to varying degrees in the three always attacks.

In summary, the detection accuracy of the CWSHT dete-
riorates significantly at high AID ratios, while our proposed 
WSHT can guarantee a good detection accuracy with less 
sampling number if the AID ratio is less than 80%. In fact, 
typical malicious detection methods can easily cope with a 
few always attacks but fail to defend against a large number 
of always attacks. This is because the sequential hypothe-
sis test process at the FC is compromised such that the FC 
requires more decision samples to make a global decision. 
However, when the AID ratio is sufficiently high, the global 
decision used as a benchmark of the local decision is no 
longer reliable, thereby causing a breakdown of the trust 
evaluation mechanism, while data transmission status as 
a verification for the consistency of local decisions is not 
affected. It is clear that the data transmission status-trust 
evaluation is crucial to ensure the robustness of the WSHT.

4.3  |  Effect of sophisticated attack

Another aspect requiring further investigation is the perfor-
mances of the WSHT and CWSHT in the presence of a sophis-
ticated attack. Considering that an always attack is a special 
case of a probabilistic attack, when the attack probability is 
appropriately set from the malicious perspective, the AID can 
launch a stealthy attack and avoid being detected. Additionally, 
in the real world, the primary network may be relatively busy 
(ie, daytime) or idle (ie, nighttime) during a sensing observa-
tion period. Therefore, we consider four scenarios as follows:

Scenario I: the false alarm attack probability �0 and the 
mis-detection attack probability �1 are set to 0.5; the proba-
bility of the hypothesis test H0 is 0.2.

Scenario II: the false alarm attack probability �0 and the 
mis-detection attack probability �1 are set to 0.5; the probabil-
ity of the hypothesis test H0 is 0.8.

Scenario III: the false alarm attack probability �0 and the 
mis-detection attack probability �1 are set to 0.8; the probabil-
ity of the hypothesis test H0 is 0.2.

Scenario IV: the false alarm attack probability �0 and the 
mis-detection attack probability �1 are set to 0.8; the probabil-
ity of the hypothesis test H0 is 0.8.

Based on the considerations above, Figures 12 and 13 show 
the detection accuracy and average number of the CWSHT and 
WSHT in four scenarios, respectively. As shown, the WSHT 
still maintains the same performance as that of the previous al-
ways attack, regardless of the attack probability and the proba-
bility of the hypothesis test H0. Unlike the always attack case, 
an appropriate attack probability allows the AID devices to ex-
hibit better attack stealthiness; therefore, in the CWSHT, both 
the downtrend of the detection accuracy and the uptrend of 
the average number of samples under sophisticated attacks are 
slower than those under the always attack. However, the superi-
ority of our proposal with respect to the detection accuracy and 
sampling number is still evident in the presence of sophisticated 
attacks, which proves the high performance of the proposed 
WSHT, even when the AID devices represent the majority.

This can be attributed to the fact that, on the one hand, a 
new weight allocation related to the consistency of the local 
decisions is introduced to establish the sensing data availabil-
ity, while, on the other hand, the sequential hypothesis test is 
conducted in the trust value descending order. Based on the 
data transmission status-based trust evaluation mechanism, the 
higher the trust value of the IoT device, the better is the consis-
tency. Hence, the likelihood ratio of an IoT device with a high 
trust value can be preferentially calculated into the decision 
variable. This advantage facilitates the FC to promptly make an 

F I G U R E  1 1   Average number of samples required for CWSHT 
and WSHT in the presence of always attack
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F I G U R E  1 2   Detection accuracy of CWSHT and WSHT varies 
with the AID ratio when the AID launches sophisticated attacks
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accurate global decision. Consequently, the proposed WSHT 
can not only cope with different attacks, but also guarantee a 
high detection accuracy with a small number of samples.

5  |   CONCLUSION AND FUTURE 
WORKS

Herein, we proposed a WSHT to defend against SDFAs in CIoT, 
which required a few samples for a better performance. Based 
on the mis-detection attack and false alarm attack models, we 
first developed the data transmission status-based trust evaluation 
mechanism from the periodic spectrum sensing frame structure to 
solve the unreliability of the global decision-based trust evaluation 
mechanism. Subsequently, we integrated the sensing data availa-
bility into the weight of the sequential hypothesis test. Moreover, 
we utilized the sequential characteristics to proceed with the se-
quential hypothesis test in descending order of the trust value. 
Finally, we conducted a series of numerical studies to corroborate 
the effectiveness and robustness of our proposed data transmission 
status and verify that the WSHT only required few samples com-
pared with the CWSHT to achieve a better performance.
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