DOI QR코드

DOI QR Code

On the performance of improved quadrature spatial modulation

  • 투고 : 2019.09.17
  • 심사 : 2020.01.08
  • 발행 : 2020.08.18

초록

Quadrature spatial modulation (QSM) utilizes the in-phase and quadrature spatial dimensions to transmit the real and imaginary parts of a single signal symbol, respectively. The improved QSM (IQSM) transmits two signal symbols per channel use through a combination of two antennas for each of the real and imaginary parts. The main contributions of this study can be summarized as follows. First, we derive an upper bound for the error performance of the IQSM. We then design constellation sets that minimize the error performance of the IQSM for several system configurations. Second, we propose a double QSM (DQSM) that transmits the real and imaginary parts of two signal symbols through any available transmit antennas. Finally, we propose a parallel IQSM (PIQSM) that splits the antenna set into equal subsets and performs IQSM within each subset using the same two signal symbols. Simulation results demonstrate that the proposed constellations significantly outperform conventional constellations. Additionally, DQSM and PIQSM provide a performance similar to that of IQSM while requiring a smaller number of transmit antennas and outperform IQSM with the same number of transmit antennas.

키워드

참고문헌

  1. E. Basar et al., Index modulation techniques for next-generation wireless networks, IEEE Access 5 (2017), 16693-16746. https://doi.org/10.1109/ACCESS.2017.2737528
  2. X. Cheng et al., Index modulation for 5G: striving to do more with less, IEEE Wireless Commun. 25 (2018), 126-132. https://doi.org/10.1109/MWC.2018.1600355
  3. R. Mesleh et al., Spatial modulation, IEEE Trans. Veh. Technol. 57 (2008), no. 4, 2228-2241. https://doi.org/10.1109/TVT.2007.912136
  4. J. Jeganathan, A. Ghrayeb, and L. Szczecinski, Spatial modulation: optimal detection and performance analysis, IEEE Commun. Lett. 12 (2008), no. 8, 545-547. https://doi.org/10.1109/LCOMM.2008.080739
  5. M. Maleki et al., On the performance of spatial modulation: optimal constellation breakdown, IEEE Trans. Commun. 62 (2013), no. 1, 144-157. https://doi.org/10.1109/TCOMM.2013.121313.130514
  6. M. Maleki, H. R. Bahrami, and A. Alizadeh, Constellation design for spatial modulation, in Proc. IEEE Int. Conf. Commun. (London, UK), 2015, pp. 2739-2743.
  7. R. Mesleh, O. Hiari, and A. Younis, Generalized space modulation techniques: hardware design and considerations, Phys. Commun. 26 (2018), 87-95. https://doi.org/10.1016/j.phycom.2017.11.009
  8. M. Wen et al., A survey on spatial modulation in emerging wireless systems: Research progresses and applications, IEEE J. Sel. Areas Commun. 37 (2019), no. 9, 1949-1972. https://doi.org/10.1109/JSAC.2019.2929453
  9. A. Younis et al., Generalised spatial modulation, in Proc. Conf. Record Asilomar Conf. Signals, Syst. Comput. (Pacific Grove, CA, USA), 2010, pp. 1498-1502.
  10. J. Wang, S. Jia, and J. Song, Generalised spatial modulation mystem with multiple active transmit antennas and low complexity detection scheme, IEEE Trans. Wireless Commun. 11 (2012), no. 4, 1605-1615. https://doi.org/10.1109/TWC.2012.030512.111635
  11. R. Mesleh, S. S. Ikki, and H. M. Aggoune, Quadrature spatial modulation, IEEE Trans. Veh. Technol. 64 (2014), no. 6, 2738-2742. https://doi.org/10.1109/TVT.2014.2344036
  12. I. Al-Nahhal, O. A. Dobre, and S. S. Ikki, Quadrature spatial modulation decoding complexity: Study and reduction, IEEE Wireless Commun. Lett. 6 (2017), no. 3, 378-381. https://doi.org/10.1109/LWC.2017.2694420
  13. B. T. Vo, H. H. Nguyen, and H. D. Tuan, Constellation design for quadrature spatial modulation, in Proc. IEEE Veh. Technol. Conf. (Toronto, Canada), 2017, pp. 1-5.
  14. J. Li et al., Generalized precoding-aided quadrature spatial modulation, IEEE Trans. Veh. Technol. 66 (2016), no. 2, 1881-1886. https://doi.org/10.1109/TVT.2016.2565618
  15. F. R. Castillo-Soria et al., Extended quadrature spatial modulation for MIMO wireless communications, Phys. Commun. 32 (2019), 88-95. https://doi.org/10.1016/j.phycom.2018.11.006
  16. M. Mohaisen and S. Lee, Complex quadrature spatial modulation, ETRI J. 39 (2017), 514-524. https://doi.org/10.4218/etrij.17.0116.0933
  17. M. Mohaisen, Increasing the minimum Euclidean distance of the complex quadrature spatial modulation, IET Commun. 12 (2018), no. 7, 854-860. https://doi.org/10.1049/iet-com.2017.1198
  18. A. Iqbal, M. Mohaisen, and K. S. Kwak, Modulation set optimization for the improved complex quadrature SM, Wireless Commun. Mobile Comput. 2018 (2018), 1-12.
  19. M. Mohaisen, Generalized complex quadrature spatial modulation, Wireless Commun. Mobile Comput. 2019 (2019), 3137927:1-12. https://doi.org/10.1155/2019/3137927
  20. B. Vo and H. H. Nguyen. Improved quadrature spatial modulation, in Proc. IEEE Veh. Technol. Conf. (Toronto, Canada), 2017, pp. 1-5.
  21. P. Ju et al., Generalized spatial modulation with transmit antenna grouping for correlated channels, in Proc. IEEE Int. Conf. Commun. (Kuala Lumpur, Malaysia), May 2016, pp. 1-6.
  22. S. AbuTayeh et al., A half-full transmit-diversity spatial modulation scheme, in Proc. Int. Conf. Broadband Commun., Netw. Syst. (Faro, Portugal), 2018, pp. 257-266.
  23. W. Qu et al., Generalized spatial modulation with transmit antenna grouping for Massive MIMO, IEEE Access 5 (2017), 26798-26807. https://doi.org/10.1109/ACCESS.2017.2775281
  24. L. Xiao et al., Compressed-sensing assisted spatial multiplexing aided spatial modulation, IEEE Trans. Wireless Commun. 17 (2017), no. 2, 794-807. https://doi.org/10.1109/TWC.2017.2771759
  25. M. Mohaisen, Constellation design and performance analysis of the parallel spatial modulation, Int. J. Commun. Syst. 32 (2019), no. 18, e4165. https://doi.org/10.1002/dac.4165
  26. F. R. Castillo-Soria et al., Generalized quadrature spatial modulation scheme using antenna grouping, ETRI J. 39 (2017), no. 5, 707-717. https://doi.org/10.4218/etrij.17.0117.0162
  27. G. Huang et al., Parallel quadrature spatial modulation for massive MIMO systems with ICI avoidance, IEEE Access 7 (2019), 154750-154760. https://doi.org/10.1109/ACCESS.2019.2949217
  28. S. Oladoyinbo, N. Pillay, and H. Xu, Single-Symbol generalized quadrature spatial modulation, Wireless Commun. Mobile Comput. 2019 (2019), 3137927:1-12.
  29. T. Holoubi et al., Double quadrature spatial modulation, Int. J. Internet, Broadcast. Commun. 11 (2019), no. 3, 27-33. https://doi.org/10.7236/ijibc.2019.11.3.27
  30. M. K. Simon and M. S. Alouini, Digital communication over fading channels, 2nd ed., vol. 95, John Wiley & Sons, Hoboken, New Jersey, 2005.
  31. G. Gritsch, H. Weinrichter, and M. Rupp, A union bound of the bit error ratio for data transmission over correlated wireless mimo channels, in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process. (Montreal, Canada), May 2004, pp. 405-408.
  32. J. Li et al., Layered orthogonal frequency division multiplexing with index modulation, IEEE Syst. J. 13 (2019), no. 4, 3793-3802. https://doi.org/10.1109/JSYST.2019.2918068
  33. N. Muchena et al., Rotated-symbol generalized spatial modulation, Int. J. Internet, Broadcast. Commun. 11 (2019), no. 3, 34-40. https://doi.org/10.7236/ijibc.2019.11.3.34
  34. L. Gou, J. Ge, and Y. Cao, Low-complexity sphere decoding for quadrature spatial modulation, in Proc. IEEE Veh. Technol. Conf. (Porto, Portugal), June 2018, pp. 1-5.
  35. I. Al-Nahhal, O. A. Dobre, and S. Ikki, Low complexity decoders for spatial and quadrature spatial modulations-invited paper, in Proc. IEEE Veh. Technol. Conf. (Porto, Portugal), June 2018, pp. 1-5.

피인용 문헌

  1. On the Performance of the Multiple Active Antenna Spatial Modulation with 3-Dimensional Constellation vol.10, pp.11, 2020, https://doi.org/10.3390/app10113718
  2. Performance Analysis and Constellation Design for the Parallel Quadrature Spatial Modulation vol.22, pp.8, 2020, https://doi.org/10.3390/e22080841
  3. Parallel Complex Quadrature Spatial Modulation vol.11, pp.1, 2020, https://doi.org/10.3390/app11010330