디지털 치의학 시대의 교합

Occlusion and articulation in digital dentistry: A review

  • 이재현 (서울대학교치과병원 원스톱협진센터)
  • Lee, Jae-Hyun (Department of Prosthodontics, One-Stop Specialty Center, Seoul National University Dental Hospital)
  • 발행 : 2020.08.31

초록

With the fourth industrial revolution, digitization is accelerating in all healthcare areas. In the field of dentistry, active discussions on digital dental technologies are ongoing, with increasing interest from clinicians daily. Thus far, accuracy and efficiency have primarily been emphasized in digital dentistry, and interest in occlusion has been relatively low. This is because digital dentistry has been predominantly used to restore small numbers of teeth rather than extensive prosthetic reconstruction. However, in the future, most dental treatments will undergo a digital transformation that will require the application of digital technology to more extensive prosthetic rehabilitation, for which discussion of occlusion is essential. In extensive prosthetic reconstruction, occlusion and articulation involve determining the position of the dental arch in relation to the reference plane of the skull or the long axis of the face and the position of the transverse horizontal axis. It also includes determining an occlusal surface with a shape that allows the mandible to move in an eccentric path and masticate most efficiently without any occlusal interference. To better understand how digitization will impact dentistry, this review article summarizes and discusses occlusion and articulation using digital dental technologies. This discussion is divided into several aspects, including facial scan, virtual articulation, augmented reality, and virtual reality.

키워드

참고문헌

  1. Gopal G, Suter-Crazzolara C, Toldo L, Eberhardt W. Digital transformation in healthcare - architectures of present and future information technologies. Clin Chem Lab Med. 2019;57(3):328-335. https://doi.org/10.1515/cclm-2018-0658
  2. Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data. JAMA. 2014;311(24):2479-2480. https://doi.org/10.1001/jama.2014.4228
  3. Joda T, Waltimo T, Pauli-Magnus C, Probst-Hensch N, Zitzmann NU. Population-Based Linkage of Big Data in Dental Research. Int J Environ Res Public Health. 2018;15(11):2357. https://doi.org/10.3390/ijerph15112357
  4. Di Fiore A, Meneghello R, Graiff L, Savio G, Vigolo P, Monaco C et al. Full arch digital scanning systems performances for implantsupported fixed dental prostheses: a comparative study of 8 intraoral scanners. J Prosthodont Res. 2019;63(4):396-403. https://doi.org/10.1016/j.jpor.2019.04.002
  5. Latham J, Ludlow M, Mennito A, Kelly A, Evans Z, Renne W. Effect of scan pattern on complete-arch scans with 4 digital scanners. J Prosthet Dent. 2020;123(1):85-95. https://doi.org/10.1016/j.prosdent.2019.02.008
  6. Buduru S, Mesaros A, Talmaceanu D, Baru O, Ghiurca R, Cosgarea R. Occlusion in the digital era: a report on 3 cases. Med Pharm Rep. 2019;92(S3):S78-S84.
  7. Franklin P, McLelland R, Brunton P. An investigation of the ability of computerized axiography to reproduce occlusal contacts. Eur J Prosthodont Restor Dent. 2010;18(1):17-22.
  8. Maestre-Ferrin L, Romero-Millan J, Penarrocha-Oltra D, Penarrocha- Diago M. Virtual articulator for the analysis of dental occlusion: an update. Med Oral Patol Oral Cir Bucal. 2012;17(1):e160-e163.
  9. Solaberrieta E, Etxaniz O, Otegi JR, Brizuela A, Pradies G. Customized procedure to display T-Scan occlusal contacts. J Prosthet Dent. 2017;117(1):18-21. https://doi.org/10.1016/j.prosdent.2016.07.006
  10. Gwilliam JR, Cunningham SJ, Hutton T. Reproducibility of soft tissue landmarks on three-dimensional facial scans. Eur J Orthod. 2006;28(5):408-415. https://doi.org/10.1093/ejo/cjl024
  11. Naudi KB, Benramadan R, Brocklebank L, Ju X, Khambay B, Ayoub A. The virtual human face: superimposing the simultaneously captured 3D photorealistic skin surface of the face on the untextured skin image of the CBCT scan. Int J Oral Maxillofac Surg. 2013;42(3):393-400. https://doi.org/10.1016/j.ijom.2012.10.032
  12. Jayaratne YS, McGrath CP, Zwahlen RA. How accurate are the fusion of cone-beam CT and 3-D stereophotographic images? PLoS One. 2012;7(11):e49585. https://doi.org/10.1371/journal.pone.0049585
  13. Att W, Witkowski S, Strub J. Digital Workflow in Reconstructive Dentistry. 1st Edition. Quintessence Publishing Co., Inc. 2019.
  14. Popat H, Richmond S, Playle R, Marshall D, Rosin P, Cosker D. Three-dimensional motion analysis - an exploratory study. Part 1: assessment of facial movement. Orthod Craniofac Res. 2008;11(4):216-223. https://doi.org/10.1111/j.1601-6343.2008.00433.x
  15. Popat H, Richmond S, Playle R, Marshall D, Rosin P, Cosker D. Three-dimensional motion analysis - an exploratory study. Part 2: reproducibility of facial movement. Orthod Craniofac Res. 2008;11(4):224-228. https://doi.org/10.1111/j.1601-6343.2008.00435.x
  16. Popat H, Richmond S, Zhurov AI, Rosin PL, Marshall D. A geometric morphometric approach to the analysis of lip shape during speech: development of a clinical outcome measure. PLoS One. 2013;8(2):e57368. https://doi.org/10.1371/journal.pone.0057368
  17. Mehl A, Blanz V, Hickel R. A new mathematical process for the calculation of average forms of teeth. J Prosthet Dent. 2005;94(6):561-566. https://doi.org/10.1016/j.prosdent.2005.10.002
  18. Mehl A. A new concept for the integration of dynamic occlusion in the digital construction process. Int J Comput Dent. 2012;15(2):109-123.
  19. Kordass B, Gartner C, Sohnel A, Bisler A, Voss G, Bockholt U et al. The virtual articulator in dentistry: concept and development. Dent Clin North Am. 2002;46(3):493-506. https://doi.org/10.1016/S0011-8532(02)00006-X
  20. Sutherland J, Belec J, Sheikh A, Chepelev L, Althobaity W, Chow BJW et al. Applying Modern Virtual and Augmented Reality Technologies to Medical Images and Models. J Digit Imaging. 2019;32(1):38-53. https://doi.org/10.1007/s10278-018-0122-7
  21. Farronato M, Maspero C, Lanteri V, Fama A, Ferrati F, Pettenuzzo A et al. Current state of the art in the use of augmented reality in dentistry: a systematic review of the literature. BMC Oral Health. 2019;19(1):135. https://doi.org/10.1186/s12903-019-0808-3
  22. Joda T, Gallucci GO, Wismeijer D, Zitzmann NU. Augmented and virtual reality in dental medicine: A systematic review. Comput Biol Med. 2019;108:93-100. https://doi.org/10.1016/j.compbiomed.2019.03.012
  23. Kwon HB, Park YS, Han JS. Augmented reality in dentistry: a current perspective. Acta Odontol Scand. 2018;76(7):497-503. https://doi.org/10.1080/00016357.2018.1441437
  24. Joda T, Gallucci GO. The virtual patient in dental medicine. Clin Oral Implants Res. 2015;26(6):725-726. https://doi.org/10.1111/clr.12379
  25. Joda T, Bornstein MM, Jung RE, Ferrari M, Waltimo T, Zitzmann NU. Recent Trends and Future Direction of Dental Research in the Digital Era. Int J Environ Res Public Health. 2020;17(6):1987. https://doi.org/10.3390/ijerph17061987
  26. Rosenstiel SF, Land MF, Fujimoto J. Contemporary Fixed Prosthodontics. 5th Edition. Mosby. 2015.