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Abstract
In this study, Saccharomyces cerevisiae culture fluid (SCCF) has been added to a diet of lac-
tating dairy cows to attempt to improve the ruminal fermentation and potentially increase the 
dry matter intake (DMI) and milk yield. This study was conducted to investigate the effects of 
SCCF on the milk yield and blood biochemistry in lactating cows during the summer. Twen-
ty-four Holstein dairy cows were randomly assigned to one of four treatments: (1) total mixed 
ration (TMR-1) (Control); (2) TMR-1 supplemented with SCCF (T1); (3) TMR-2 (containing 
alfalfa hay) (T2); and (4) TMR-2 supplemented with SCCF (T3). SCCF (5 ml/head, 2.0×107 
CFU/mL) was mixed with TMRs daily before feeding to dairy cows. The mean daily tempera-
ture-humidity index (THI) during this trial was 76.92 ± 0.51 on average and ranged from 73.04 
to 81.19. For particle size distribution, TMR-2 had a lower >19 mm fraction and a higher 8–19 
mm fraction than TMR-1 (p < 0.05). The type of TMR did not influence the DMI, body weight 
(BW), milk yield and composition, or blood metabolites. The milk yield and composition were 
not affected by the SCCF supplementation, but somatic cell counts were reduced by feeding 
SCCF (p < 0.05). Feeding SCCF significantly increased the DMI but did not affect the milk 
yield of dairy cows. The NEFA concentration was slightly decreased compared to that in the 
control and T2 groups without SCCF. Feeding a yeast culture of S. cerevisiae may improve 
the feed intake, milk quality and energy balance of dairy cows under heat stress.
Keywords: Saccharomyces cerevisiae, Milk production, Blood metabolism, Dairy cow, Heat stress

INTRODUCTION
Milk production by dairy cows has increased by 41% (2,802 kg/head) in milk yield and 0.12% (120.04 
kg/head) in milk fat from 2,000 to 2,020 in Korea [1]. With these improvements and selection, dairy 
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cows are more sensitive to heat stress, which directly or indirectly influences the normal physiology, 
metabolism, and hormonal and immune systems [2]. Heat stress also causes economic losses 
according to negative effects on the milk production, milk composition, reproductive efficiency, and 
udder health [2,3]. Thus, environmental and nutritional methods to alleviate heat stress have been 
studied to improve the lactation performance of dairy cows.

In particular, feed additives, including yeast supplements such as Saccharomyces cerevisiae, are 
widely used to improve the lactation performance and health in dairy cows [4,5]. Many studies 
have reported that feeding S. cerevisiae positively influences the dry matter intake (DMI), rumen 
pH, nutrient digestibility, immune function and milk quality of dairy cows [5–7]. Because of its 
effects on the rumen fermentation and nutrient digestion, some authors have suggested that feeding 
yeast products may be most beneficial to dairy cows under heat stress [8–12]. Arambel and Kent 
[8] suggested that yeast products might be more effective under heat stress than under normal 
conditions. Schingoethe et al. [9] reported a significant improvement in feed efficiency when mid-
lactating dairy cows were supplemented with S. cerevisiae during summer months. S. cerevisiae 
culture contains fermentation substrates, bacterial proteins, yeast metabolites, yeast cell walls, and 
other beneficial substances, and it can balance the interstinal flora, improve immunity, relieve stress, 
and improve productivity [10].

Recently, several agricultural technology centers in Korea have supplied microbial cultures 
such as Lactobacillus plantarum, Bacillus subtilis, and S. cerevisiae, which are known to effectively 
improve the feed efficiency, productivity and environment of livestock. However, research on the 
method or effectiveness of feeding S. cerevisiae culture to dairy cows is limited. There is also limited 
understanding of how S. cerevisiae culture affects the lactation performance of heat-stressed dairy 
cows associated with blood metabolism. Therefore, we hypothesized that S. cerevisiae culture 
would improve the milk productivity and blood metabolism of dairy cows exposed to heat stress if 
feeding S. cerevisiae could increase the DMI of dairy cows under such conditions. To address this 
hypothesis, the effects of the S. cerevisiae culture addition in different total mixed rations (TMRs) 
on DMI, milk production and quality, and energy status in dairy cows during heat stress were 
evaluated.

MATERIALS AND METHODS
Animals, diets, and experimental design
All dairy cows and the experimental protocol in this experiment were approved by the Institutional 
Animal Care and Use Committee (IACUC, study approval number: 20191519) at the National 
Institute of Animal Science (NIAS, Jeonju, Korea). The experiment was conducted at the 
Department of Animal Resources Development, NIAS (Cheonan, Korea). Twenty-four Holstein 
dairy cows were allocated into 4 groups based on day in milk (DIM) (187.3 ± 41.9; mean ± 
standard deviation), parity (1.75 ± 0.19), milk yield (31.21 ± 1.05 kg/d), and body weight (BW) 
678 ± 10.67 kg. The cows were randomly assigned within blocks to one of four dietary treatments: 
(Control) TMR-1; (T1) TMR-1 supplemented with S. cerevisiae culture fluid (SCCF, 5 mL/head); 
(T2) TMR-2; and (T3) TMR-2 supplemented with SCCF (Table 1). TMR-1 was mixed with 
domestic forages such as corn silage, rice straw silage, and whole-crop barley silage. TMR-2 was 
mixed by adding alfalfa hay, which has mainly been used in dairy farms, in addition to domestic 
forages of TMR-1. SCCF (S. cerevisiae, ca. 2.0×107 CFU/mL, AAH180004, Anseong 40-18-83-
100), which is a fully fermented yeast culture containing fermentation metabolites, residual yeast 
cells, and growth media, was provided by the Agricultural Technology Center (Anseong, Korea). 
The SCCF supplementations were mixed with TMRs daily at the time of feeding to dairy cows. 
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TMR-1 and TMR-2 were formulated to satisfy or exceed the nutrient requirements [13] for 
lactating Holstein dairy cows (DMI 22.0 kg/d, net energy for lactation [NEL] 32.5 Mcal/d). The 
ingredient and nutrient contents of the feed components are presented in Table 1.

Cows were housed in a loose barn and fed the TMR daily at 09:00 with free access to drinking 
water. Feed was offered ad libitum to yield 10% residues. The barn contained fans over feeding alleys 
every 5 m, and the fans were operated once the ambient temperature reached 25℃. The experiment 
commenced from July 12 to August 8, which is the typical hot season in Cheonan, Korea. The 
feeding trial was composed of a 2-week adaptation period and a 2-week experimental period.

Sampling and measurement of milk composition
To measure the environmental conditions inside the barn, temperature and relative humidity 
(RH) were recorded by a thermohygrometer (Model 174H, Testo, West Chester, PA, USA) with 
an accuracy of ± 0.5℃ and ± 3% RH. A thermohygrometer was set to record every hour per day 
and placed at a height of 2 m from the feeding area. The temperature-humidity index (THI) was 
calculated as THI = (0.8 × C) + [RH % × (C − 14.4)] + 46.4 according to Mader et al. [14]. For 
each 24 h period, the average daily minimum, mean and maximum temperatures and RH were 
determined using the hourly recorded data, and the minimum, mean and maximum THIs were 

Table 1. Experimental design and composition of TMRs in the experiment
Items Control T1 T2 T3

No. of cows 6 6 6 6

SCCF (2×107 CFU/mL) - 5 mL/head - 5 mL/head

Experimental diets TMR-1 TMR-2

Ingredient (% of DM)

Concentrates 38.54 39.59

Corn 7.73 7.95

Full-fat soybeans 4.03 2.07

DDGS 5.41 1.85

Corn silage 11.84 12.17

Whole crop barley silage 19.19 16.43

Rice silage 10.91 7.47

Alfalfa - 10.06

Minerals and vitamins 2.35 2.41

Chemical compositions (% of DM)

Crude protein 15.15 14.77

Ether extract 5.04 5.75

Crude fiber 18.20 17.79

Crude ash 10.40 9.98

NDF 33.09 33.14

ADF 26.18 24.50

Ca 1.28 1.25

P 0.39 0.51

NEL (Mcal/kg DM) 1.46 1.49

RFV 192.58 195.97

RFQ 5.31 5.40
TMR, total mixed ration; SCCF, Saccharomyces cerevisiae culture fluid (Agriculture Technology Center, Anseong, Korea); DM, 
dry matter; DDGS, dried distiller’s grains with solubles; NDF, neutral detergent fiber; ADF, acid detergent fiber; NEL, net energy 
for lactation; RFV, relative feed value; RFQ, relative feed quality
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calculated (Fig. 1 and Table 3). Feed offered and residues were weighed daily to determine the 
DMI throughout the experiment. Representative samples of individual dietary ingredients and 
TMR were collected weekly and stored at –20℃ until analyses. All samples were analyzed by 
AOAC [15] for concentrations of dry matter, crude protein, ether extract, crude fiber, and crude ash 
and by Van Soest et al. [16] for concentrations of neutral detergent fiber (NDF) and acid detergent 
fiber (ADF). Particle size distributions of TMR-1 and TMR-2 were measured by sieving using the 
Penn State Particle Separator [17]. The sum of the DM retained on the top (19 mm) and middle 
sieves (8 mm) was assumed to be equal to the physical effectiveness factor (pef ) of feeds.

Cows were milked 2 times daily at 06:00 and 17:00 h, and individual milk production was 
recorded daily using a DeLaval’s Alpro Herd management system (DeLaval international, Tumba, 
Sweden) with a double-eight herringbone parlor. Individual milk samples were collected from 
consecutive morning and afternoon milking on the seventh day of each week from each cow. The 
milk samples were analyzed to obtain the somatic cell count (SCC), fat, protein, lactose, total solids, 
and milk urea nitrogen (MUN) concentrations using a CombiScope FTIR (Delta Instruments, 
Drachten, Netherlands).

Analysis of blood metabolites
All cows were sampled for blood on the last day of the study. Blood samples of each cow were taken 
through the jugular vein with a syringe before feeding the cows. The collected blood samples were 
transferred into vacutainer tubes (BD Vacutainer, Becton Dickinson, Frankin Lakes, NJ, USA) and 
centrifuged at 1,000×g for 15 min at 4℃. The serum samples were immediately frozen at -20℃ 

and later analyzed for aspartate aminotransferase (AST), alanine aminotransferase (ALT), glucose, 
triglyceride, cholesterol, nonessential fatty acid (NEFA), blood urea nitrogen (BUN), and creatinine 
concentrations. Serum samples were used to analyze biochemistry (Wako Chemicals, Neuss, 
Germany) using a blood autoanalyzer (Hitachi 7180, Hitachi, Tokyo, Japan).

Statistical analysis
Statistical analysis was conducted using the Statistical Analysis System (SAS) Enterprise Guide 
7.1 (SAS Institute, Cary, NC, USA). The particle size distribution was analyzed to determine the 
effects of the experimental TMRs with one-way analysis of variance (ANOVA). The DMI, BW 

Fig. 1. Daily mean temperature, relative humidity, and temperature-humidity index (THI) during the study. 
The dashed lines represent two THI threshold values: 68 THI (blue color) and 72 THI (orange color).
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gain, milk yield, milk composition, and blood metabolite data were analyzed by two-way ANOVA 
using the general linear model procedure to determine the main effects, treatments (with or without 
SCCF) and TMR (no vs. mixing the alfalfa hay), and their interaction (Treatment × TMR). If there 
were differences, we continued with the Duncan multiple range test. Differences with p < 0.05 were 
declared significant. Duncan’s multiple range test was used to evaluate the significant differences.

RESULTS AND DISCUSSION
Environmental temperature, humidity, and temperature-humidity index
The average mean daily temperature (℃) and RH (%) during the entire experiment were 26.40 
± 0.32℃ and 80.32 ± 1.39%, respectively (Fig. 1). The average mean daily THI (76.92 ± 0.51) in 
the barn housing cows over all days exceeded 68, which characterizes exposure to heat stress for 
lactating dairy cows [18]. The daily THI variation was 8.14 ± 0.54 on average and ranged from 
73.04 to 81.19 (Table 2).

A THI value of 72 is a critical threshold value, above which the productive properties of the cow 
begin to change and a drop in productivity is noted [19]. Recent studies state that THI 68 is the 
lower limit for the occurrence of heat stress [18]. Carter et al. [18] noted that high-yield dairy cows 
experienced heat stress when average daily THI > 68 or minimum daily THI > 65. From previous 
studies, environmental conditions over all days caused heat stress for lactating dairy cows.

Particle size distribution
Table 3 shows that TMR-2 had a lower proportion retained on the top screen (> 19 mm) and a 
higher proportion retained on the middle screen (8–19 mm) than TMR-1 (p < 0.05). The particle 
size distribution of TMR-2, which replaced some of the long forage such as whole crop barle 
(WCB) and rice silage with alfalfa hay, resulted in lower physically effective neutral detergent fiber 
(peNDF)19.0 and peNDF8.0 than those in TMR-1 (p < 0.05).

The particle size distribution of TMRs in this study did not satisfy the recommendation 
guidelines suggested by Heinrichs and Kononoff [20]: 2%–8% long particles (> 19 mm), 30%–50% 

Table 2. Daily minimum, mean, and maximum temperature, relative humidity, and temperature-humidity 
index (THI) during this experiment

Items Temperature (℃) Relative humidity (%) THI
Average daily

Mean 26.40 ± 0.32 80.32 ± 1.39 76.92 ± 0.51

Minimum 23.20 ± 0.36 64.79 ± 2.14 73.04 ± 0.63

Maximum 30.36 ± 0.51 93.86 ± 0.66 81.19 ± 0.62

Table 3. Particle size distribution and peNDF of TMRs determined by the Penn state particle separator
Items TMR-1 TMR-2 SEM p-value

Particle fractions on sieve (% [DM basis])

Top (19 mm) 15.11a 11.78b 0.53 < 0.001

Middle (8 mm) 23.79b 25.52a 0.27 < 0.001

Bottom 61.11 62.70 0.47 0.091

peNDF19.0 (%) 5.39a 3.90b 0.20 < 0.001

peNDF8.0 (%) 13.91a 12.36b 0.20 < 0.001
a,bDenotes comparison made within rows (p < 0.05).
peNDF, physical effective neutral detergent fiber; TMR, total mixed ration; DM, dry matter.
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medium and short particles (8–19 mm), and no more than 20% fine particles (< 8 mm). A particle 
fraction > 19 mm and peNDF8.0 were good parameters for monitoring the TMR physical form 
indicator to improve the chewing activity and rumen pH and prevent sorting [21]. In this study, 
beneficial physical effects were not observed for TMR with added alfalfa hay because TMR-2 had 
fewer particles > 19 mm but more particles < 8 mm than TMR-1.

Dry matter intake, body weight, milk yield and composition
The intake of DM in all treatments did not differ by the type of TMR (TMR-1 and TMR-2) 
(Table 4). This result is not consistent with Fischer et al. [22], who observed that the DMI was 
higher for those fed hay and TMR containing short instead of long silage. Meanwhile, the DMI 
was 2.7 kg/d higher for T1- and T3-supplemented S. cerevisiae than for the control and T2 cows (p 
< 0.05). Similar tendencies were observed in some studies: the DMI in dairy cows was affected by 
S. cerevisiae supplementation during early lactation [23] or mid-lactation during the summer [11]. 
Heat-stressed cows reduce the feed intake, rumination and saliva production. It may act as a risk 
factor to make the rumen function inappropriate [11]. S. cerevisiae can alter the ruminal microbial 
fermentation by stimulating the activity of fiber-digesting bacteria and increasing fiber digestion 
[6]. From the present study, feeding S. cerevisiae may mitigate the negative effect of heat stress on 
the DMI of dairy cows.

Milk yield were not affected among the treatments. However, some studies reported that 
the milk yield increased with increasing levels of S. cerevisiae under normal conditions [11]. 
Additionally, when heat-stressed dairy cows were fed yeasts and yeast cultures, milk production 
increased by 1–2 kg/d [23,24]. In this study, the reduction of milk yield numerically was lower in 
T1 and T3 (−1.16 and −1.89 kg/d, respectively) with supplemented S. cerevisiae than in control and 
T2 (−2.69 and −2.23 kg/d, respectively) with prolonged exposure to heat stress compared with the 
beginning of this trial (Fig. 2). Dairy cows exposed to heat stress exhibited decreased milk yield 
due to the high metabolic heat production with ruminal fermentation [2,3]. However, according to 
Callaway and Martin [6], the beneficial effects of S. cerevisiae supplementation on milk production 
resulted from the stabilized condition of rumen fermentation.

The feeding treatment of S. cerevisiae had no impact on the concentration of fat, protein, and 
lactose. These results are consistent with Arambel and Kent [8], who found that S. cerevisiae 
supplementation had no positive effect on the milk composition of dairy cows. Specifically, no 

Table 4. Effect of the Saccharomyces cerevisiae supplementation on the dry matter intake, milk production and composition in dairy cows that 
were fed different TMRs during heat stress

Items
TMR-1 TMR-2

SEM
p-value

Control T1 T2 T3 Treat TMR Treat × TMR
DMI (kg/d) 18.69b 21.13a 18.71b 21.67a 0.20 < 0.001 0.354 0.401

BW gain (kg) −9.42 −0.08 2.42 −11.25 4.07 0.798 0.969 0.184

Milk yield (kg/d) 28.85 29.89 28.30 29.85 0.43 0.095 0.215 0.286

Fat (%) 3.54 3.69 3.56 3.70 0.07 0.308 0.887 0.991

Protein (%) 3.06 3.02 2.99 3.08 0.03 0.720 0.799 0.310

Lactose (%) 4.74 4.70 4.76 4.75 0.02 0.549 0.443 0.623

Total solids (%) 11.14b 12.16a 10.88b 12.29a 0.16 < 0.001 0.742 0.513

SCC (×103/mL) 202.0a 114.3b 237.8a 99.8b 81.73 0.002 0.476 0.875

MUN (mg/dL) 14.48a 7.25b 14.12a 6.85b 0.42 < 0.001 0.415 0.966
Treat, supplementation or not with S. cerevisiae culture fluid (5 mL/head, 2×107 CFU/mL).
a,bDenotes comparison made within rows (p < 0.05).
TMR, total mixed ration; DMI, dry matter intake; BW, body weight; SCC, somatic cell count; MUN ,milk urea nitrogen.
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changes in percentage of milk fat and protein appeared in lactating dairy cows under heat stress 
[9,11]. However, the total solids in milk were higher in dairy cows that were fed SCCF than in 
those not fed SCCF (p < 0.05).

SCC is a commonly used index of milk quality and a defense component of mammary glands 
against disease or intramammary infections [25]. The SCC in the present study was reduced by 
feeding S. cerevisiae (p < 0.05). Similarly, some studies reported that yeast product supplementation 
improved the mammary gland health in lactating dairy cows and reduced the incidence of mastitis 
[4,7]. These results are not fully explained but may be due to immunomodulation with antioxidant 
and anti-inflammatory effects of yeast product supplementation [26]. Although it is difficult to 
clearly explain the relationship between S. cerevisiae supplementation and SCC in milk from this 
study, yeast feed addition appears to help alleviate the increase in SCC during heat stress in a 
previous study.

Feeding SCCF decreased the MUN concentration in milk (p < 0.05), which corroborates 
previous studies [11] indicating that S. cerevisiae supplements reduced MUN during natural 
heat stress. Other studies observed that heat stress increased MUNs, and feeding SCCFs had no 
detectable effects on MUNs [12]. Heat-stressed cows mobilize skeletal muscle to provide amino 
acids to produce acute-phase proteins [27] and glucose [28]. The difference in the results of previous 
studies and this study may be due to different stages of lactation, feeding strategy (type of forage 
fed, feeding strategy, and forage-to-concentrate ratio [5, 29]), and heat stress severity [12].

Serum metabolites from blood samples
The NEFA concentrations were slightly different between treatments with or without SCCF 
supplementation and, according to control, BUN was affected on the TMR groups either with 
alfalfa hay or not (p < 0.05; Table 5). The other metabolic indices, including AST, ALT, glucose, 
triglyceride, cholesterol, and creatinine, were not affected by the SCCF supplementation or 
experimental TMRs.

Some studies observed that the blood parameters were not affected by the S. cerevisiae treatment 
[12,29]. However, other studies reported that S. cerevisiae supplementation favorably influenced the 
energy metabolic status and might have a liver-protecting effect on high-yield cows [30,31].

Cows in a state of negative energy balance are biochemically characterized by elevations in blood 

Fig. 2. Milk production in dairy cows that were fed different TMRs before and after feeding 
Saccharomyces cerevisiae culture fluid (SCCF) supplementation during heat stress. TMR, total mixed 
ration.
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biochemical parameters such as β-hydroxybutyrate (BHB) and NEFA and reductions in glucose 
concentrations [32]. In the current study, a lower NEFA concentration was observed in dairy cows 
fed SCCF (p < 0.05). This result is consistent with the results reported by Kumprechtova et al. [30] 
that the NEFA level was lower in early lactation dairy cows fed S. cerevisiae supplementation. Their 
study explained that lower NEFA levels might be considered a sign of reduced lipomobilization 
processes and hepatic ketogenesis. Dairy cows that were offered TMR with alfalfa had lower BUN 
concentrations, probably as a result of the lower total N and energy consumption than those of 
TMR with whole-crop barley.

The effects of SCCF on the lactation performance and blood metabolism of dairy cows remain 
inconsistent among previous studies. However, little research has been conducted on the effects of 
S. cerevisiae dietary supplementation on heat-stressed dairy cows, so further study relating to this 
issue is required.

CONCLUSION
In the present study, SCCF supplementation was fed to mid-lactating dairy cows during heat 
stress under the conditions with different ingredients of TMR to improve the milk productivity 
and blood metabolism. The findings of this study reveal that S. cerevisiae alleviated the reduction in 
DMI and the increase in SCC in heat-stressed dairy cows but did not affect the milk composition. 
Feeding S. cerevisiae contributed to a decrease in NEFA concentration, which reflects the energy 
metabolism, but did not affect the other blood parameters. Thus, SCCF supplementation can 
increase the DMI and improve the milk quality.
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