DOI QR코드

DOI QR Code

Channel Searching Sequence for Rendezvous in CR Using Sidel'nikov Sequence

시델니코프 수열을 활용한 인지통신의 Rendezvous를 위한 채널 탐색 수열

  • Jang, Jiwoong (Department of Computer Information Technology, Ulsan College)
  • Received : 2021.09.27
  • Accepted : 2021.10.11
  • Published : 2021.11.30

Abstract

Rendezvous is a process that assists nodes in a Cognitive Radio Networks (CRNs) to discover each other. In CRNs where a common control channel is unknown and a number of channels are given, it is important how two nodes find each other in a known search region. In this paper, I have proposed and analyzed a channel hopping sequence using Sidel'nikov sequence by which each node visits an available number of channels. I analyze the expected time to-rendezvous (TTR) mathematically. I also verify the Rendezvous performance of proposed sequence in the view of TTR under 2 user environment compared with JS algorithm and GOS algorithm. The Rendezvous performance of proposed sequence is much better than GOS algorithm and similar with JS algorithm. But when M is much smaller than p, the performance of proposed sequence is better than JS algorithm.

Rendezvous는 인지통신에서 사용자간의 탐색을 지원하는 프로세스이다. 공통채널을 알 수 없고 채널의 숫자만 알려진 인지통신 환경에서 통신을 원하는 두 사용자가 상대방을 인식하는 것은 매우 중요한 과정이다. 본 논문에서는 시델니코프 수열을 채널 탐색 수열로 활용하여 두 사용자가 가용채널을 탐색하고 서로를 인지하는 방안을 제시하고 분석하였다. 또한, Rendezvous까지 소요시간의 기댓값을 수학적으로 분석하였다. 또한, 2명의 사용자 환경 하에서 모의실험을 통하여 기존의 알고리듬인 JS알고리듬과 GOS알고리듬과의 성능을 비교하여 새로 제안된 수열의 Rendezvous 성능을 TTR 관점에서 검증하였다. 새로 제안된 수열의 성능은 GOS 알고리듬보다 우수하고 JS 알고리듬과 비슷하였다. 그러나 M이 p보다 많이 작은 경우에 대해서는 새로 제안된 수열의 성능이 JS알고리듬보다 우수하였다.

Keywords

Acknowledgement

This work was supported by the 2019 Research Fund(201910016) of Ulsan College.

References

  1. D. M. Alias and G. K. Ragesh, "Cognitive Radio networks: A survey," 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 1981-1986, 2016.
  2. P. Rawat, K. D. Singh, and J. M. Bonnin, "Cognitive radio for M2M and Internet of Things: A survey," Computer Communications, vol. 94, no. 15, pp. 1-29, Nov. 2016. https://doi.org/10.1016/j.comcom.2016.07.012
  3. F. Salahdine, N. Kaabouch, and H. E. Ghazi, "A survey on compressive sensing techniques for cognitive radio networks," Physical Communication, vol. 20, pp. 61-73, Sep. 2016. https://doi.org/10.1016/j.phycom.2016.05.002
  4. A. Ali and W. Hamouda, "Advances on Spectrum Sensing for Cognitive Radio Networks: Theory and Applications," IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 1277-1304, 2017. https://doi.org/10.1109/COMST.2016.2631080
  5. F. A. Awin, Y. M. Alginahi, E. Abdel-Raheem, and K. Tepe, "Technical Issues on Cognitive Radio-Based Internet of Things Systems: A Survey," IEEE Access, vol. 7, pp. 97887-97908, 2019. https://doi.org/10.1109/access.2019.2929915
  6. N. Muchandi and R. Khanai, "Cognitive radio spectrum sensing: A survey," 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 3233-3237, 2016.
  7. F. Hu, B. Chen, and K. Zhu, "Full Spectrum Sharing in Cognitive Radio Networks Toward 5G: A Survey," in IEEE Access, vol. 6, pp. 15754-15776, 2018. https://doi.org/10.1109/access.2018.2802450
  8. R. Paul and Y. Choi, "Adaptive Rendezvous for Heterogeneous Channel Environments in Cognitive Radio Networks," IEEE Transactions on Wireless Communications, vol. 15, no. 11, pp. 7753-7765, Nov. 2016. https://doi.org/10.1109/TWC.2016.2607170
  9. B. Yang, M. Zheng, and W. Liang, "A time-efficient rendezvous algorithm with a full rendezvous degree for heterogeneous cognitive radio networks," in IEEE INFOCOM 2016, pp. 1-9, 2016.
  10. Z. Gu, T. Shen, Y. Wang, and F. C. M. Lau, "Efficient Rendezvous for Heterogeneous Interference in Cognitive Radio Networks," IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp. 91-105, Jan. 2020. https://doi.org/10.1109/twc.2019.2942296
  11. T. Lin, G. Yang, and W. C. Kwong, "A Homogeneous Multi-Radio Rendezvous Algorithm for Cognitive Radio Networks," IEEE Communications Letters, vol. 23, no. 4, pp. 736-739, Apr. 2019. https://doi.org/10.1109/lcomm.2019.2903458
  12. Y. Chang, C. Chang, and J. Sheu, "An Enhanced Fast Multi-Radio Rendezvous Algorithm in Heterogeneous Cognitive Radio Networks," IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp. 847-859, Dec. 2018. https://doi.org/10.1109/tccn.2018.2871208
  13. X. J. Tan, C. Zhou, and J. Chen, "Symmetric Channel Hopping for Blind Rendezvous in Cognitive Radio Networks Based on Union of Disjoint Difference Sets," IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 10233-10248, Nov. 2017. https://doi.org/10.1109/TVT.2017.2726352
  14. J. Sheu and J. Lin, "A Multi-Radio Rendezvous Algorithm Based on Chinese Remainder Theorem in Heterogeneous Cognitive Radio Networks," IEEE Transactions on Mobile Computing, vol. 17, no. 9, pp. 1980-1990, Sept. 2018. https://doi.org/10.1109/tmc.2018.2790408
  15. T. C. Schelling, The strategy of conflict, Harvard University Press, Cambridge, 1960.
  16. S. Alpern, "The rendezvous search problem," SIAM J Control Optim, vol. 33, no. 3, pp. 673-683, 1995. https://doi.org/10.1137/S0363012993249195
  17. J. Polson, "Cognitive radio: The technologies," in Cognitive Radio Technologies, B. Fette, Ed. Elsevier, no. 4, pp. 153-155, 2006.
  18. J. Jia, Q. Zhang, and X. Shen, "Hc-mac: A hardware-constrained cognitive mac for efficient spectrum management," IEEE JSAC, vol. 26, no. 1, pp. 106-117, Jan. 2008.
  19. L. Ma, C. C. Shen, and B. Ryu, "Single-Radio Adaptive Channe Algorithm for Spectrum Agile Wireless Ad Hoc Networks," in Proc. 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks DySPAN 2007, pp. 547-558, Apr. 2007.
  20. A. Motamedi and A. Bahai, "MAC Protocol Design for Spectrum-Agile Wireless Networks: Stochastic Control Approach," in Proc. 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks DySPAN 2007, pp. 448-451, Apr. 2007.
  21. L. A. DaSilva and I. Guerreiro, "Sequence-Based Rendezvous for Dynamic Spectrum Access," 2008 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 1-7, 2008.
  22. K. Bian and J. M. Park, "Asynchronous channel hopping for establishing rendezvous in cognitive radio networks," in INFOCOM Miniconference, pp. 236-240, 2011.
  23. N. Theis, R. Thomas, and L. DaSilva, "Rendezvous for cognitive radios," IEEE Transactions on Mobile Computing, vol. 10, no. 2, pp. 216-227, Feb. 2011. https://doi.org/10.1109/TMC.2010.60
  24. C. Cormio and K. R. Chowdhury, "Common control channel design for cognitive radio wireless ad hoc networks using adaptive frequency hopping," Ad Hoc Networks, vol. 8, pp. 430-438, 2010. https://doi.org/10.1016/j.adhoc.2009.10.004
  25. P. Bahl, R. Chandra, and J. Dunagan, "SSCH: Slotted Seeded Channel Hopping for Capacity Improvement in IEEE 802.11 Ad- Hoc Wireless Networks," in Proc. ACM MobiCom 04, pp. 216-230, Sept. 2004.
  26. A. C. Hsu, D. S. L. Weit, and C. C. J. Kuo, "A Cognitive MAC Protocol Using Statistical Channel Allocation for Wireless Ad-Hoc Networks," in Proc. IEEE Wireless Communications and Networking Conference WCNC 2007, pp. 105-110, Mar. 2007.
  27. Z. L. Lin, H. Liu, X. Chu, and L. Yiu-Wing, "Jump-Stay based channelhopping algorithm with guaranteeed rendezvous for cognitive radio networks," in IEEE INFORCOM2011, pp. 2444-2452, Jun. 2011.
  28. Y. S. Kim, J. S. Chung, J. S. No, and H. Chung, "On the autocorrelation distributions of Sidel'nikov sequences," IEEE Transactions on Information Theory, vol. 51, no. 9, pp. 3303-3307, Sep. 2005. https://doi.org/10.1109/TIT.2005.853310