DOI QR코드

DOI QR Code

Present Status and Future of AI-based Drug Discovery

신약개발에서의 AI 기술 활용 현황과 미래

  • Jung, Myunghee (Department of Software Engineering, Anyang University) ;
  • Kwon, Wonhyun (Department of Information, Electircal and Electronic Engineering, Anyang University)
  • Received : 2021.08.12
  • Accepted : 2021.10.29
  • Published : 2021.12.31

Abstract

Artificial intelligence is considered one of the core technologies leading the 4th industrial revolution. It is adopted in various fields bringing about a huge paradigm shift throughout our society. The field of biotechnology is no exception. It is undergoing innovative development by converging with other disciplines such as computers, electricity, electronics, and so on. In drug discovery and development, big data-based AI technology has a great potential of improving the efficiency and quality of drug development, rapidly advancing to overcome the limitations in the existing drug development process. AI technology is to be specialized and developed for the purpose including clinical efficacy and safety-related end points based on the multidisciplinary knowledge such as biology, chemistry, toxicology, pharmacokinetics, etc. In this paper, we review the current status of AI technology applied for drug discovery and consider its limitations and future direction.

4차 산업혁명을 주도하는 기술 중 가장 핵심적인 기술로 꼽히고 있는 인공지능은 다양한 분야에 접목되면서 우리 사회 전반에 걸쳐 패러다임의 전환을 가져오고 있다. 바이오 분야 역시 예외는 아니어서 컴퓨터, 전기·전자, 기계 등 타 학문과 융합되면서 방대한 데이터 기반의 AI 기술을 도입하고 있다. 신약개발에서 AI 기술 도입은 신약개발의 효율성을 개선하고 효능 및 품질 향상을 가져올 수 있다. 신약개발은 다학제 분야가 접목된 융합 분야이고 개발 과정 단계별로 결과의 불확실성이 존재하고 있어 실용적 수준의 신약 개발을 위해서는 화학, 생물학, 독성학, 약동학 등 전문지식의 융합을 기반으로 하는 AI 기술 개발이 필요하다. 신약개발은 크게 주어진 질병에 대한 타겟 물질 발굴 및 검증, 히트 및 선도물질 발굴, 도출된 화합물에 대한 합성 가능성 및 효능 등에 대한 평가(Scoring)를 거쳐 최적의 신약 후보 물질을 발굴하고 마지막으로 전임상과 임상 과정의 단계를 거친다. 이때 AI 기술은 모든 단계에서 적용될 수 있고 단계마다 특화되어 적용될 수 있다. 본 논문에서는 신약개발을 위해 적용되고 있는 AI 기술 현황과 현재 기술의 한계를 살펴보고 향후 신약개발에서 AI 기술의 발전 방향을 고찰해 보고자 한다.

Keywords

References

  1. K. Mak and M. Pichika, "Artificial intelligence in drug development: present status and future prospects," Drug Discovery Today, vol. 24, no. 3, pp. 773-780, Mar. 2019. https://doi.org/10.1016/j.drudis.2018.11.014
  2. N. Fleming, "How artificial intelligence is changing drug discovery", Nature, vol. 557, pp. 55-57, May. 2018. https://doi.org/10.1038/d41586-018-05267-x
  3. G. Hessler and K. Baringhaus, "Artificial Intelligence in Drug Design", Molecules, vol. 23, no. 10, pp. 2520, 2018. https://doi.org/10.3390/molecules23102520
  4. H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, "The rise of deep learning in drug discovery," Drug Discovery Today, vol. 23, no. 6, pp. 1241-1250, Jun. 2018. https://doi.org/10.1016/j.drudis.2018.01.039
  5. I. M. Kapetanovic, "Computer-aided drug discovery and development (CADDD): in-silico-chemico-biological approach," Chem. Biol. Interact, vol. 171, pp. 165-176, 2008. https://doi.org/10.1016/j.cbi.2006.12.006
  6. S. P. Leelananda and S. Lindert, "Computational methods in drug discovery," Beilstein J. Org. Chem., vol. 12, pp. 2694-2718, 2016. https://doi.org/10.3762/bjoc.12.267
  7. L. Zhang, J. Tan, D. Han, and H. Zhu, "From machine learning to deep learning: progress in machine intelligence for rational drug discovery," Drug Discovery Today, vol. 22, no. 11, pp. 1680-1685, Nov. 2017. https://doi.org/10.1016/j.drudis.2017.08.010
  8. L. Patel, T. Shukla, X. Huang, D. Ussery, and S. Wang, "Machine Learning Methods in Drug Discovery," Molecules, vol. 25, pp. 5277, 2020. https://doi.org/10.3390/molecules25225277
  9. S. Woo, "Drug Discovery Enhanced by Artificial Intelligence," Biomedical Journal of Scientific & Technical Research, vol. 12, no. 1, Dec. 2018.
  10. A. Bender and I. Cortes-Ciriano, "Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet," Drug Discovery Today, vol. 26, no. 2, pp. 511-524, 2021. https://doi.org/10.1016/j.drudis.2020.12.009
  11. Y. Lo, S. E. Rensi, W. Torng, and R. B. Altman, "Machine learning in chemoinformatics and drug discovery," Drug Discovery Today, vol. 23, no. 8, pp. 1538-1546, 2018. https://doi.org/10.1016/j.drudis.2018.05.010
  12. K. T. Nho and S. J. Lee, "chemoinformatics for drug discovery," Journal of Scientific & Technological Knowledge Infrastructure, no. 3, pp. 68-75, 2000.
  13. A. Varnek and I. Baskin, "Machine learning methods for property prediction in chemoinformatics: Quo Vadis?," Journal of Chemical Information and Modeling, vol. 52, pp. 1413-1437, 2012. https://doi.org/10.1021/ci200409x
  14. E. J. Bjerrum, "SMILES enumeration as data augmentation for neural network modeling of molecules," arXiv: 1703.07076, 2017.
  15. D. Rogers and M. Hahn, "Extended-Connectivity Fingerprints," Journal of Chemical Information and Modeling, vol. 50, no. 5, pp. 742-754, 2010. https://doi.org/10.1021/ci100050t
  16. J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, B. Li, A. Madabhushi, P. Shah, M. Spitzer, and S. Zhao, "Applications of machine learning in drug discovery and development," Nature Review of Drug Discovery, vol. 18, no. 6, pp. 463-477, Jun. 2019. https://doi.org/10.1038/s41573-019-0024-5
  17. E. Gawehn, J. Hiss, and G. Schneider, "Deep Learning in Drug Discovery," Molecular Informatics, vol. 35, no. 1, pp. 3-14, Jan. 2016. https://doi.org/10.1002/minf.201501008
  18. Y. Yang, S. J. Adelstein, and A. I. Kassis, "Target discovery from data mining approaches," Drug Discovery. Today, vol. 14, pp. 147-154. 2009. https://doi.org/10.1016/j.drudis.2008.12.005
  19. T. Katsila, G. A. Spyroulias, G. P. Patrinos, and M. Matsoukasa, "Computational approaches in target identification and drug discovery," Computational and Structural Biotechnology Journal, vol. 14, pp. 177-184, 2016. https://doi.org/10.1016/j.csbj.2016.04.004
  20. T. Huang, H. Mi, C. Lin, L. Zhao, L. Zhong, F. Liu, G., A. Lu, and Z. Bian, "MOST: most-similar ligand based approach to target prediction," BMC Bioinformatics, vol. 18, no. 1, 2017.
  21. T. Rodrigues and G. J. Bernardes, "Machine learning for target discovery in drug development," Current Opinion in Chemical Biology, vol. 56, pp. 16-22, 2020. https://doi.org/10.1016/j.cbpa.2019.10.003
  22. D. Gao, Q. Chen, Y. Zeng, M. Jiang, and Y. Zhang, "Application of Machine Learning on Drug Target Discovery," Current Drug Metabolism, 2020.
  23. R. Chen, X. Liu, S. Jin, J. Lin, and J. Liu, "Machine Learning for Drug-Target Interaction Prediction," Molecules, vol. 23, no. 9:2208, 2018 https://doi.org/10.3390/molecules23092208
  24. G. Y. Joo, "AlphaFold: Ai-based protein 3D structure," Technical Report, Apr. 2019.
  25. AlphaFold [Internet]. Available: https://deepmind.com/blog/alphafold/.
  26. J. Pereira, E. Caffarena, C. Dos Santos, and C. N. Boosting, "Docking-Based Virtual Screening with Deep Learning," J. Journal of Chemical Information and Modeling, vol. 56, pp. 2495-2506, 2016. https://doi.org/10.1021/acs.jcim.6b00355
  27. M. Ragoza, J. Hochuli, E. Idrobo, J. Sunseri, and D. Koes, "Protein-ligand scoring with convolutional neural networks," Journal of Chemical Information and Modeling, vol. 57, pp. 942-957, 2017. https://doi.org/10.1021/acs.jcim.6b00740
  28. C. Reda, E. Kaufmann, and A. Delahaye-Duriezade, "Machine learning applications in drug development," Computational and Structural Biotechnology Journal, vol. 18, pp. 241-252, 2020. https://doi.org/10.1016/j.csbj.2019.12.006
  29. M. Elbadawi, S. Gaisford, and A. W. Basit, "Advanced machine-learning techniques in drug discovery," Drug Discovery Today, vol. 26, no. 3, pp. 769-777, Mar. 2021. https://doi.org/10.1016/j.drudis.2020.12.003
  30. V. Svetnik, A. Liaw, C. Tong, J. Culberson, R. Sheridan, and B. Feuston, "Random forest: a classification and regression tool for compound classification and QSAR modeling," Journal of Chemical Information and Computer Sciences, vol. 43, pp. 1947-1958, 2003. https://doi.org/10.1021/ci034160g
  31. K. Lee, M. Lee, and D. Kim, "Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server," BMC Bioinformatics, vol. 18, no. 567, 2017.
  32. H. Sun, "A naive bayes classifier for prediction of multidrug resistance reversal activity on the basis of atom typing," Journal of Medical Chemistry, vol. 48, pp. 4031-4039, 2005. https://doi.org/10.1021/jm050180t
  33. C. Ratanamahatana and D. Gunopulos, "Feature selection for the naive bayesian classifier using decision trees," Applied Artificial Intelligence, vol. 17, no. 5-6, 2003.
  34. C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, pp. 273-297, 1995. https://doi.org/10.1007/BF00994018
  35. J. D. MacCuish and N. E. MacCuish, "Clustering in Bioinformatics and Drug Discovery," CRC Press, 2019.
  36. G. Mohamed, M. Hamdy, and B. Ashraf, "Clustering of chemical data sets for drug discovery," 2014 9th International Conference on Informatics and Systems, Dec. 2014.
  37. A. Giuliani, "The application of principal component analysis to drug discovery and biomedical data," Drug Discovery Today, vol. 22, no. 7, pp. 1069-1076, 2017. https://doi.org/10.1016/j.drudis.2017.01.005
  38. A. Rifaioglu, H. Atas, M. Martin, R. Cetin-Atalay, V. Atalay, and T. Dogan, "Recent applications of deep learning and machine intelligence on in silico drug discovery, methods, tools and databases," Brief Bioinformatics, vol. 20, pp. 1878-1912, 2019. https://doi.org/10.1093/bib/bby061
  39. I. Baskin, D. Winkler, and I. Tetko, "A renaissance of neural networks in drug discovery," Expert Opin. Drug Discov., vol. 11, pp. 785-795, 2016. https://doi.org/10.1080/17460441.2016.1201262
  40. Y. Bengio, "Learning deep architectures for AI," Foundations and Trends in Machine Learning, vol. 2, no. 1, pp. 1-55, Jan. 2009. https://doi.org/10.1561/2200000006
  41. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, 2015. https://doi.org/10.1038/nature14539
  42. I. Goldberg, "Deep Learning in Drug Discovery and Medicine; Scratching the Surface," Molecules, vol. 23,no. 9:2384, 2018. https://doi.org/10.3390/molecules23092384
  43. H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, "The rise of deep learning in drug discovery," Drug Discovery Today, vol. 23, no. 6, pp. 1241-1250, Jun. 2018. https://doi.org/10.1016/j.drudis.2018.01.039
  44. K. Manish, N. Abhigyan, T. P. Singh, A. S. Ethayathulla, and P. Kaur, "Evolving scenario of big data and Artifcial Intelligence (AI) in drug discovery," Molecular Diversity, vol. 25, pp. 1439-1460, 2021. https://doi.org/10.1007/s11030-021-10256-w
  45. A. Arabi, "Artificial intelligence in drug design: algorithms, applications, challenges and ethics," Future Drug Discovery, vol. 3, no. 2, 2021.
  46. H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Unsupervised learning of hierarchical representations with convolutional deep belief networks," Communications of the ACM, vol. 54, pp. 95-103, 2011.
  47. J. Yasonik, "Multiobjective de novo drug design with recurrent neural networks and nondominated sorting," Journal of Cheminformatics, vol. 12, no. 14, 2020.
  48. I. Wallach, M. Dzamba, and A. Heifets, "AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery," CoRR, 2015.
  49. DeepSite [Internet]. Available: https://playmolecule.org/deepsite/.
  50. J. Jimenez, M. Skalic, G. Martinez-Rosell, and G. De Fabritiis, "K DEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks," Journal of Chemical Information and Modeling, vol. 58, no. 2, pp. 287-296, 2018. https://doi.org/10.1021/acs.jcim.7b00650
  51. A. Bender and I. Cortes-Ciriano, "Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data," Drug Discovery Today, vol. 26, no. 4, pp. 1040-1052, Apr. 2021. https://doi.org/10.1016/j.drudis.2020.11.037
  52. R. C. Mohs and N. H. Greig, "Drug discovery and development: role of basic biological research," Alzheimer's & Dementia, vol. 3, no. 4, pp. 651-657, 2017. https://doi.org/10.1016/j.trci.2017.10.005