DOI QR코드

DOI QR Code

Temperature ranges for survival and growth of juvenile Saccharina sculpera (Laminariales, Phaeophyta) and applications for field cultivation

  • Kim, Soo Hong (Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science) ;
  • Kim, Young Dae (Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science) ;
  • Hwang, Mi Sook (Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science) ;
  • Hwang, Eun Kyoung (Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science) ;
  • Yoo, Hyun Il (Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science)
  • Received : 2021.07.07
  • Accepted : 2021.11.21
  • Published : 2021.12.15

Abstract

Saccharina sculpera is highly valued for human consumption and value-added products. However, natural resources of this kelp have decreased sharply and it is in danger of extinction. Resources recovery through cultivation is being trialed to enable the sustainable use of this species. In this study, the temperature range for survival and optimal growth of juvenile S. sculpera was identified and applied to field cultivation. This study investigated the survival and growth of juvenile S. sculpera under six temperatures (i.e., 5, 10, 15, 16, 18, and 20℃) and two light intensities (i.e., 20 and 40 µmol photons m-2 s-1) in an indoor culture experiment. In these experiments, the blade length decreased at 16℃ under the both light intensities. The thalli died at 20℃ and 20 µmol photons m-2 s-1, and at 18-20℃ and 40 µmol photons m-2 s-1. During the field cultivation, early growth of S. sculpera was highest at the 5 m depth and growth decreased as the water depth increased. When the initial rearing depth was maintained without adjustment throughout the cultivation period (from December to October), all the cultivated S. sculpera plants died during August and September. However, S. sculpera plants lowered from 5 to 15 m and grew to 90.8 ± 13.1 cm in July. The seawater temperature at 15 m depth was similar to the upper level of thermal tolerance demonstrated by juvenile S. sculpera in the indoor culture experiments (16℃ or lower). The plants were subsequently lowered to 25 m depth in August, which eventually led to their maturation in October. The present study confirmed that improved growth rates and a delay in biomass loss can be achieved by adjusting the depth at which the seaweeds are grown during the cultivation period. These results will contribute to the establishment of sustainable cultivation systems for S. sculpera.

Keywords

Acknowledgement

The study was funded by the National Institute of Fisheries Science in 2021 (R2021005). The authors would like to thank Dr. Philip Heath (Tisbe Ltd., New Zealand) for reviewing the English.

References

  1. Augyte, S., Yarish, C. & Neefus, C. D. 2019. Thermal and light impacts on the early growth stages of the kelp Saccharina angustissima (Laminariales, Phaeophyceae). Algae 34:153-162. https://doi.org/10.4490/algae.2019.34.5.12
  2. Azevedo, I. C., Duarte, P. M., Marinho, G. S., Neumann, F. & Sousa-Pinto, I. 2019. Growth of Saccharina latissima (Laminariales, Phaeophyceae) cultivated offshore under exposed conditions. Phycologia 58:504-515. https://doi.org/10.1080/00318884.2019.1625610
  3. Boo, S. M., Lee, W. J., Hwang, I. K., Keum, Y. S., Oak, J. H. & Cho, G. Y. 2010. Algal flora of Korea. Vol. 2, No. 2, Marine brown algae II. National Institute of Biological Resources, Ministry of Environment, Incheon, 203 pp.
  4. Breeman, A. M. 1988. Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgol. Meeresunters. 42:199-241. https://doi.org/10.1007/BF02366043
  5. Druehl, L. D., Cabot, E. L. & Lloyd, K. E. 1987. Seasonal growth of Laminaria groenlandica as a function of plant age. Can. J. Bot. 65:1599-1604. https://doi.org/10.1139/b87-219
  6. Galanin, D., Yotsukura, N. & Kawai, T. 2011. Distributional information of Saccharina sculpera in Japan and Saghalin, Russia. Algal Resour. 4:1-7 (in Japanese with English abstract).
  7. Hwang, E. K. & Park, C. S. 2020. Seaweed cultivation and utilization of Korea. Algae 35:107-121. https://doi.org/10.4490/algae.2020.35.5.15
  8. Hwang, E. K., Yoo, H. C., Kim, S. M., Beak, J. M. & Park, C. S. 2015. Isolation, regeneration and maturation induction of free-living gametophytes of Saccharina japonica (Phaeophyceae). Korean J. Environ. Biol. 33:248-255. https://doi.org/10.11626/KJEB.2015.33.2.248
  9. Jeong, H. -D., Kim, S. -W., Kwon, K. -Y., Lim, J. -W. & Kwoun, C. -H. 2013. Oceanographic features around aquaculture areas of the eastern cost of Korea. J. Korean Soc. Mar. Environ. Saf. 19:334-344. https://doi.org/10.7837/kosomes.2013.19.4.334
  10. Kain, J. M. & Norton, T. A. 1990. Marine ecology. In Cole, K. M. & Sheath, R. G. (Eds.) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 377-422.
  11. Kang, J. W. 1968. Illustrated encyclopedia of fauna and flora of Korea. Vol. 8. Marine algae. Ministry of Education, Seoul, 465 pp.
  12. Katayama, S., Nishio, T., Iseya, Z., Kishimura, H. & Saeki, H. 2009. Effects of manufacturing factors on the viscosity of a polysaccharide solution extracted from Gagome Kjellmaniella crassifolia. Fish. Sci. 75:491-497. https://doi.org/10.1007/s12562-009-0070-8
  13. Kim, H. G. 2003. Environmental adaptation of native kelp Kjellmaniella crassifolia and marine environment in Gangwon coast. In Proc. 6th Korea-Japan Fish. Semin., Korea Science and Engineering Foundation, Seoul and Japan Society for the Promotion of Science, Tokyo, pp. 25-37.
  14. Kim, H. G., Park, J. G. & Kim, D. S. 2005. Comparative laboratory culture studies of the native kelp Kjellmaniella crassifolia and the introduced kelp Laminaria japonica in east coast of Korea. J. Aquac. 18:299-304.
  15. Kim, J. -H., Kim, Y. -D., Song, H. -I., Gong, Y. -G., Lee, S. -B. & Jin, H. -J. 2007a. Separation and preservation of the male and female gametophytes of Kjellmaniella crassifolia Miyabe (Phaeophyta). J. Korean Fish. Soc. 40:387-393.
  16. Kim, Y. -D., Song, H. -I., Kim, J. -H., Hong, J. -P., Jeon, C. -Y., Han, H. -K., Kim, S. -K., Kim, D. -S., Kim, M. -R. & Jin, H. -J. 2007b. Study of the early life of Kjellmaniella crassifolia and its growth in the eastern coast of the Korean Peninsula. J. Korean Fish. Soc. 40:315-322.
  17. Kirihara, S., Fujikawa, Y. & Notoya, M. 2003. Effect of the temperature and light intensity on the growth of zoospore germling of Kjellmaniella crassifolia Miyabe (Laminariales, Phaeophyceae) in culture. Aquac. Sci. 51:281-286 (in Japanese with English abstract).
  18. Ko, S. J., Kim, Y. K., Hong, S. W., Kang, M. S., Park, C. S., Hwang, E. K. & Lee, Y. D. 2020. Artificial seed production and cultivation of Sargassum macrocarpum (Fucales, Phaeophyta). Algae 35:123-131. https://doi.org/10.4490/algae.2020.35.5.27
  19. Leandro, A., Pereira, L. & Goncalves, A. M. M. 2020. Diverse applications of marine macroalgae. Mar. Drugs 18:17. https://doi.org/10.3390/md18010017
  20. Lee, I. K. & Kim, Y. H. 1999. Biodiversity and distribution of marine benthic organisms and uses of algal resources in the coastal zone of Korea and Japan. I. Benthic marine algae in the east coast of Korea. Algae 14:91-110.
  21. Luning, K. 1990. Seaweeds: their environment, biogeography, and ecophysiology. Wiley, New York, 527 pp.
  22. Luning, K. 1993. Environmental and internal control of seasonal growth in seaweeds. Hydrobiologia 260/261:1-14. https://doi.org/10.1007/BF00048997
  23. Minisrty of Oceans and Fisheries. 2007. Studies on Kjellmaniella crassifolia for wildstock restoration and industrialized aquaculture. Minisrty of Oceans and Fisheries, Sejong, 132 pp.
  24. National Institute of Fisheries Science. 2020. Technical report of National Institute of Fisheries Science. National Institute of Fisheries Science, Busan, 819 pp.
  25. Notoya, M. & Kim, H. G. 1996. Influence of light intensity and temperature on callus cell propagation and differentiation to bladelets from the explants of young sporophyte of Kjellmaniella crassifolia Miyabe (Phaeophyta, Laminariales). Algae 11:179-182.
  26. Ozaki, A., Mizuta, H. & Yamamoto, H. 2001. Physiological differences between the nutrient uptakes of Kjellmaniella crassifolia and Laminaria japonica (Phaeophyceae). Fish. Sci. 67:415-419. https://doi.org/10.1046/j.1444-2906.2001.00277.x
  27. Qu, T., Cao, Z., Wang, W., Wang, N., Li, X. & Pan, J. 2019. Monthly variations of fucoidan content and its composition in the farmed brown alga Saccharina sculpera (Laminariales, Phaeophyceae). J. Appl. Phycol. 31:2623-2628. https://doi.org/10.1007/s10811-019-1753-x
  28. Ren, D., Wang, Q., Yang, Y., Hu, Y., Song, Y., He, Y., Liu, S. & Wu, L. 2019. Hypolipidemic effects of fucoidan fractions from Saccharina sculpera (Laminariales, Phaeophyceae). Int. J. Biol. Macromol. 140:188-195. https://doi.org/10.1016/j.ijbiomac.2019.08.002
  29. Sakai, T. & Kato, I. 2001. Functionality of kelp fucoidan and its use in health foods. New Food Ind. 43:8-12 (in Japanese).
  30. Sakai, T. & Kato, I. 2002. Structure and biological activity of seaweed-derived fucoidan and its oligosaccharides. Biosci. Ind. 60:23-26 (in Japanese).
  31. Sasaki, S., Kawashima, S. & Kadoma, H. 1992. Natural kelp failure Research of cause. Life and marine environment survey report of kelp in Toi area Declaration. Toi Town, 89 pp.
  32. Sato, Y., Kozono, J., Nishihara, G. N. & Terada, R. 2020. Effect of light and temperature on photosynthesis of a cultivated brown alga, Saccharina sculpera (Laminariales), from Japan. Phycologia 59:375-384. https://doi.org/10.1080/00318884.2020.1777384
  33. Serisawa, Y., Yokohama, Y., Aruga, Y. & Tanaka, J. 2002. Growth of Ecklonia cava (Laminariales, Phaeophyta) sporophytes transplanted to a locality with different temperature conditions. Phycol. Res. 50:201-207. https://doi.org/10.1046/j.1440-1835.2002.00274.x
  34. South, G. R. & Whittick, A. 1987. Introduction to phycology. Blackwell Scientific Publications, Oxford, 341 pp.
  35. Sumich, J. L. & Morrissey, J. F. 2004. Introduction to the biology of marine life. 8th ed. Jones and Bartlett Publishhers, Sudbury, MA, 431 pp.
  36. Takahashi, K. 2000. Changes in the growth of gagome in the Oshima area. Kitasui Mag. 49:22.
  37. Tani, T., Kawagoe, C., Matsumoto, S., Mizuta, H. & Yasui, H. 2015. Seasonal variations and morphological changes of sporophytes of Saccharina sculpera (Laminariales, Phaeophyceae) from Hakodate, Hokkaido. Aquac. Sci. 63:235-244.
  38. Tatewaki, M. 1966. Formation of a crustose sporophyte with unilocular sporangia in Scytosiphon lomentaria. Phycologia 6:62-66. https://doi.org/10.2216/i0031-8884-6-1-62.1
  39. Vasquez, J. A. & Vega, J. M. A. 2001. Chondracanthus chamissoi (Rhodophyta, Gigartinales) in northern Chile: ecological aspects for management of wild populations. J. Appl. Phycol. 13:267-277. https://doi.org/10.1023/A:1011152922832
  40. Yamamoto, H. 1986. Monthly changes in the occurrence and growth of Kjellmaniella crassifolia Miyabe. Bull. Fac. Fish. Hokkaido Univ. 37:165-170.
  41. Yoo, H. I., Lee, K. H., Kim, S. H., Ha, D. S. & Hwang, E. K. 2018. Regeneration and the maturation induction of free-living gametophytes of a kelp Saccharina sculpera (Phaeophyceae). Korean J. Environ. Biol. 36:576-583. https://doi.org/10.11626/KJEB.2018.36.4.576