DOI QR코드

DOI QR Code

A simple method to produce fragment seedstock for aquaculture of Pterocladiella capillacea (Gelidiales, Rhodophyta)

  • Choi, Chang Geun (Department of Ecological Engineering, Pukyong National University) ;
  • Lee, Ju Il (Department of Ecological Engineering, Pukyong National University) ;
  • Hwang, Il Ki (Aquaculture Research Department, National Institute of Fishery Science) ;
  • Boo, Sung Min (Department of Biological Sciences, Chungnam National University)
  • Received : 2021.06.23
  • Accepted : 2021.11.20
  • Published : 2021.12.15

Abstract

Raw material of gelidioid red algae yielding high-quality agar has been in short supply due to overharvesting, but in situ farming of gelidioids has not been practical due to their slow growth. To produce vegetative seedstock of a cosmopolitan species, Pterocladiella capillacea, we investigated the number and length of regenerated branches arising from sectioned fragments during 3 weeks of laboratory culture at 10, 15, 20, and 25℃. All sectioned fragments formed axis-like branches mostly from the upper cut edge and stolon-like branches mostly from the lower cut edge, showing a high capacity of regeneration and intrinsic bipolarity. At 20℃, the number of regenerated branches increased to 2.74 ± 1.29 on the upper cut edge and 4.26 ± 2.66 on the lower cut edge. Our study reveals that the use of fragments bearing regenerated branches as seedstock can be a simple method to initiate fast propagation for mass cultivation in the sea or outdoor tank.

Keywords

Acknowledgement

We appreciate Wendy Nelson for improving the readability of our paper. This work was supported by a research grant of Pukyong National University (2021).

References

  1. Akatsuka, I. 1986. Japanese Gelidiales (Rhodophyta), especially Gelidium. Oceanogr. Mar. Biol. Ann. Rev. 24:171-263.
  2. Boo, G. H., Hughey, J. R., Miller, K. A. & Boo, S. M. 2016. Mitogenomes from type specimens, a genotyping tool for morphologically simple species: ten genomes of agar-producing red algae. Sci. Rep. 6:e35337.
  3. Bottalico, A., Delle Foglie, C. I. & Fanelli, M. 2008. Growth and reproductive phenology of Pterocladiella capillacea (Rhodophyta: Gelidiales) from the southern Adriatic Sea. Bot. Mar. 51:124-131. https://doi.org/10.1515/BOT.2008.023
  4. Buggeln, R. G. 1981. Morphogenesis and growth regulators. In Lobban, C. S. & Wynne, M. J. (Eds.) The Biology of Seaweeds. Blackwell Scientific Publications, Oxford, pp. 627-660.
  5. Callaway, E. 2015. Lab staple agar hit by seaweed shortage. Nature 528:171-172. https://doi.org/10.1038/528171a
  6. Cecere, E., Petrocelli, A. & Veraque, M. 2011. Vegetative reproduction by multicellular propagules in Rhodophyta: an overview. Mar. Ecol. 32:419-437. https://doi.org/10.1111/j.1439-0485.2011.00448.x
  7. Chen, Y. W., Lee, H. V., Juan, J. C. & Phang, S. -M. 2016. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr. Polym. 151:1210-1219. https://doi.org/10.1016/j.carbpol.2016.06.083
  8. Fei, X. G. & Huang, L. J. 1991. Artificial sporeling and field cultivation of Gelidium in China. Hydrobiologia 221:119-124. https://doi.org/10.1007/BF00028368
  9. Felicini, G. P., Bottalico, A. & Fanelli, M. 2002. Morphogenesis in Pterocladiella capillacea (Rhodophyta, Gelidiales): bud differentiation in relation to irradiance-temperature combinations. Plant Biosyst. 136:261-267. https://doi.org/10.1080/11263500212331351169
  10. Felicini, G. P. & Perrone, C. 1994. Pterocladia. In Akatsuka, I. (Ed.) Biology of Economic Algae. SPB Academic Publishing, The Hague, pp. 283-344.
  11. Fralick, R. A., Baldwin, H. P., Neto, A. I. & Hehre, E. J. 1990. Physiological responses of Pterocladia and Gelidium (Gelidiales, Rhodophyta) from the Azores, Portugal. Hydrobiologia 204-205:479-482. https://doi.org/10.1007/BF00040274
  12. Freshwater, D. W., Fredericq, S. & Hommersand, M. H. 1995. A molecular phylogeny of the Gelidiales (Rhodophyta) based on analysis of plastid rbcL nucleotide sequences. J. Phycol. 31:616-632. https://doi.org/10.1111/j.1529-8817.1995.tb02558.x
  13. Friedlander, M. 2008. Advances in cultivation of the Gelidiales. J. Appl. Phycol. 20:451-456. https://doi.org/10.1007/s10811-007-9285-1
  14. Friedlander, M. & Zelikovitch, N. 1984. Growth rates, phycocolloid yield and quality of the red seaweeds, Gracilaria sp., Pterocladia capillacea, Hypnea musciformis, and Hypnea cornuta, in field studies in Israel. Aquaculture 40:57-66. https://doi.org/10.1016/0044-8486(84)90216-3
  15. Gal-Or, S. & Israel, A. 2004. Growth responses of Pterocladiella capillacea (Rhodophyta) in laboratory and outdoor cultivation. J. Appl. Phycol. 16:195-202. https://doi.org/10.1023/B:JAPH.0000048505.13667.bf
  16. Harb, T. B., Nardelli, A. & Chow, F. 2018. Physiological responses of Pterocladiella capillacea (Rhodophyta, Gelidiales) under two light intensities. Photosynthetica 56:1093-1106. https://doi.org/10.1007/s11099-018-0805-9
  17. Hwang, I. K. & Boo, G. H. 2019. Vegetative reproduction and phylogeny of a new subtidal alga from Korea: Dipterocladia yongdeokkoi sp. nov. (Ceramiales, Rhodophyta). Phycologia 58:26-35. https://doi.org/10.1080/00318884.2018.1517531
  18. Macler, B. A. & Zupan, J. R. 1991. Physiological basis for the cultivation of the Gelidiaceae. Hydrobiologia 221:83-90. https://doi.org/10.1007/BF00028365
  19. Matos, J., Gomes, A., Cardoso, C., Afonso, C., Campos, A. M., Gomes, R., Fale, P., Delgado, I., Coelho, I., Castanheira, I. & Bandarra, N. M. 2020. Commercial red seaweed in Portugal (Gelidium sesquipedale and Pterocladiella capillacea, Florideophyceae): going beyond a single-purpose product approach by valorizing bioactivity. Thalassas 36:213-224. https://doi.org/10.1007/s41208-019-00181-z
  20. Nasr, A. H., Mohsen, A. F. & Bekheet, I. A. 1966. Effect of salinity and temperature variations on Pterocladia capillacea. Hydrobiologia 27:395-400. https://doi.org/10.1007/BF00042702
  21. Nelson, W. A. & Farr, T. J. 2003. Field and morphological observations of Gelidium longipes (Gelidiales, Rhodophyta), a rare endemic red alga from northern New Zealand. N. Z. J. Bot. 41:707-713. https://doi.org/10.1080/0028825X.2003.9512880
  22. Patarra, R. F., Iha, C., Pereira, L. & Neto, A. I. 2020. Concise review of the species Pterocladiella capillacea (S.G. Gmelin) Santelices & Hommersand. J. Appl. Phycol. 32:787-808. https://doi.org/10.1007/s10811-019-02009-y
  23. Patarra, R. F., Lloveras, A. A., Carreiro, A. S., Abreu, M. H., Buschmann, A. H. & Neto, A. I. 2019. Short term effects of irradiance on the growth of Pterocladiella capillacea (Gelidiales, Rhodophyta). Arquipelago Life Mar. Sci. 36:85-94.
  24. Rhein-Knudsen, N., Ale, M. T. & Meyer, A. S. 2015. Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar. Drugs 13:3340-3359. https://doi.org/10.3390/md13063340
  25. Rodriguez, D. 1996. Vegetative propagation by fragmentation of Gelidium sclerophyllum (Gelidiales, Rhodophyta). Hydrobiologia 326:361-365. https://doi.org/10.1007/BF00047832
  26. Santos, R. & Melo, R. A. 2018. Global shortage of technical agars: back to basics (resource management). J. Appl. Phycol. 30:2463-2473. https://doi.org/10.1007/s10811-018-1425-2
  27. Servierse-Zaragoza, E. & Scrosati, R. 2000. Reproductive phenology of Pterocladiella capillacea (Rhodophyta: Gelidiales) from Southern Baja California, Mexico. Pac. Sci. 56:285-290. https://doi.org/10.1353/psc.2002.0029
  28. Starr, R. C. & Zeikus, J. A. 1993. UTEX: the culture collection of algae at the University of Texas at Austin: 1993 list of cultures. J. Phycol. 29(Suppl):1-106. https://doi.org/10.1111/j.0022-3646.1993.00001.x
  29. Stewart, J. G. 1968. Morphological variation in Pterocladia pyramidale. J. Phycol. 4:76-84. https://doi.org/10.1111/j.1529-8817.1968.tb04680.x
  30. Stewart, J. G. 1984. Vegetative growth rates of Pterocladia capillacea (Gelidiaceae, Rhodophyta). Bot. Mar. 27:85-94. https://doi.org/10.1515/botm.1984.27.2.85
  31. Tait, L. W. & Schiel, D. R. 2018. Ecophysiology of layered macroalgal assemblages: importance of subcanophy species biodiversity in buffering primary production. Front. Mar. Sci. 5:444. https://doi.org/10.3389/fmars.2018.00444
  32. Yokoya, N. S. & Oliveira, E. C. 1992. Temperature responses of economically important red algae and their potential for mariculture in Brazilian waters. J. Appl. Phycol. 4:339-345. https://doi.org/10.1007/BF02185791