DOI QR코드

DOI QR Code

Experimental study of graphene oxide on wollastonite induced cement mortar

  • Sairam, V. (School of Civil Engineering, Vellore Institute of Technology) ;
  • Shanmugapriya, T. (School of Civil Engineering, Vellore Institute of Technology) ;
  • Jain, Chetan (School of Civil Engineering, Vellore Institute of Technology) ;
  • Agrahari, Himanshu Kumar (School of Civil Engineering, Vellore Institute of Technology) ;
  • Malpani, Tanmay (School of Civil Engineering, Vellore Institute of Technology)
  • 투고 : 2020.01.16
  • 심사 : 2021.11.22
  • 발행 : 2021.12.25

초록

Present research is mainly focused on, microstructural and durability analysis of Graphene Oxide (GO) in Wollastonite (WO) induced cement mortar with silica fume. The study was conducted by evaluating the mechanical properties (compressive and flexural strength), durability properties (water absorption, sorptivity and sulphate resistance) and microstructural analysis by SEM. Cement mortar mix prepared by replacing 10% ordinary portland cement with SF was considered as the control mix. Wollastonite replacement level varied from 0 to 20% by weight of cement. The optimum replacement of wollastonite was found to be 15% and this was followed by four sets of mortar specimens with varying substitution levels of cementitious material with GO at dosage rates of 0.1%, 0.2%, 0.3% and 0.4% by weight. The results indicated that the addition of up to 15%WO and 0.3% GO improves the hydration process and increase the compressive strength and flexural strength of the mortar due to the pore volume reduction, thereby strengthening the mortar mix. The resistance to water penetration and sulphate attack of mortar mixes were generally improved with the dosage of GO in presence of 15% Wollastonite and 10% silica fume content in the mortar mix. Furthermore, FE-SEM test results showed that the WO influences the lattice framework of the cement hydration products increasing the bonding between silica fume particles and cement. The optimum mix containing 0.3% GO with 15% WO replacement exhibited extensive C-S-H formation along with a uniform densified structure indicating that calcium meta-silicate has filled the pores.

키워드

과제정보

The authors would like to thank the faculties and lab assistant from School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu for their constant support and motivation to carry out this research work.

참고문헌

  1. Altoubat, S., Yazdanbakhsh, A. and Rieder, K.A. (2009), "Shear behaviour of macro-synthetic fiber-reinforced concrete beams without stirrups", ACI Mater. J., 106(4), 381.
  2. ASTM C1012 (2010), Standard Test Method for Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution, ASTM International, West Conshohocken, PA.
  3. ASTM C1585 (2013), Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic, ASTM International, West Conshohocken, PA.
  4. ASTM C348 (2014), Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, ASTM International, West Conshohocken, PA.
  5. ASTM C494 Type F (2017), Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA.
  6. ASTM C642 (2013), Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, PA.
  7. Babak, F., Abolfazl, H., Alimorad, R. and Parviz, G. (2014), "Preparation and mechanical properties of graphene oxide: Cement nanocomposites", Sci. World J., 2014, 276323. https://doi.org/10.1155/2014/276323.
  8. Bhanja, S. and Sengupta, B. (2005), "Influence of silica fume on the tensile strength of concrete", Cement Concrete Res., 35(4), 743-747. https://doi.org/10.1016/j.cemconres.2004.05.024.
  9. Bustos-Garcia, A., Moreno-Fernandez, E., Zavalis, R. and Valivonis, J. (2019), "Diagonal compression tests on masonry wallets coated with mortars reinforced with glass fibres", Mater. Struct., 52(3), 60. https://doi.org/10.1617/s11527-019-1360-y.
  10. Camargo, P.H.C., Satyanarayana, K.G. and Wypych, F. (2009), "Nanocomposites: Synthesis, structure, properties and new application opportunities", Mater. Res., 12(1), 1-39. https://doi.org/10.1590/S1516-14392009000100002.
  11. Cao, X., Xu, C., Wang, Y., Liu, Y., Liu, Y. and Chen, Y. (2013), "New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber", Polym. Test., 32(5), 819-826. https://doi.org/10.1016/j.polymertesting.2013.04.005.
  12. Chuah, S., Pan, Z., Sanjayan, J.G., Wang, C.M. and Duan, W.H. (2014), "Nano reinforced cement and concrete composites and new perspective from graphene oxide", Constr. Build. Mater., 73, 113-124. https://doi.org/10.1016/j.conbuildmat.2014.09.040.
  13. Deng, X., Yang, W., Liu, X.Q., Cheng B.J. and Liu T. (2013), "Study on properties of wollastonite micro fiber reinforced mortar", Adv. Mater. Res., 785, 151-156. https://doi.org/10.4028/www.scientific.net/AMR.785-786.151.
  14. Dey, V., Kachala, R., Bonakdar, A. and Mobasher, B. (2015), "Mechanical properties of micro and sub-micron wollastonite fibres in cementitious composites", Constr. Build. Mater., 82, 351-359. https://doi.org/10.1016/j.conbuildmat.2015.02.084.
  15. Diamanti, M.V., Ormellese, M. and Pedeferri, M. (2008), "Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide", Cement Concrete Res., 38(11), 1349-1353. https://doi.org/10.1016/j.cemconres.2008.07.003.
  16. Gangopadhyay, R. and De, A. (2000), "Conducting polymer nanocomposites: A brief overview", Chem. Mater., 12(3), 608-622. https://doi.org/10.1021/cm990537f.
  17. Gao, X., Zhang A., Li S., Sun B. and Zhang, L. (2016), "The resistance to high temperature of magnesia phosphate cement paste containing wollastonite", Mater. Struct., 49(8), 3423-3434. https://doi.org/10.1617/s11527-015-0729-9.
  18. Gesoglu, M. and Guneyisi, E. (2007), "Strength development and chloride penetration in rubberized concretes with and without silica fume", Mater. Struct., 40(9), 953-964. https://doi.org/10.1617/s11527-007-9279-0.
  19. Ghahari, S.A., Ghafari, E. and Assi, L. (2018), "Pore structure of cementitious material enhanced by graphitic nanomaterial: A critical review", Front. Struct. Civ. Eng., 12(1), 137-147. https://doi.org/10.1007/s11709-017-0431-9.
  20. Gong, K., Pan, Z., Korayem, A.H., Qiu, L., Li, D., Collins, F. and Duan, W.H. (2014), "Reinforcing effects of graphene oxide on portland cement paste", J. Mater. Civ. Eng., 27(2), A4014010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125.
  21. Gu, Y., Xia, K., Wei, Z., Jiang, L., She, W. and Lyu, K. (2020), "Synthesis of nanoSiO2@ graphene-oxide core-shell nanoparticles and its influence on mechanical properties of cementitious materials", Constr. Build. Mater., 236, 117619. https://doi.org/10.1016/j.conbuildmat.2019.117619.
  22. Hou, D. (2020), Molecular Dynamics Study on Cement-Graphene Nanocomposite, Molecular Simulation on Cement-Based Materials, Springer, Singapore.
  23. Hummers, W.S. and Offeman, R.E. (1958), "Preparation of graphitic oxide", J. Am. Chem. Soc., 80(6), 1339-1339. https://doi.org/10.1021/ja01539a017.
  24. IS 383 (2016), Indian Standards Specification for Coarse and Fine Aggregate from Natural Source for Concrete, Bureau of Indian Standards, New Delhi.
  25. IS 4031-6 (1988), Indian Standards Specification for Methods of Physical Tests for Hydraulic Cement, Bureau of Indian Standards, New Delhi.
  26. IS:12269 (2013), Indian Standard: Specification for 53 grade Ordinary Portland Cement, Bureau of Indian Standards, New Delhi.
  27. Kalla, P., Misra, A., Gupta, R.C., Csetenyi, L., Gahlot, V. and Arora, A. (2013), "Mechanical and durability studies on concrete containing wollastonite-fly ash combination", Constr. Build. Mater., 40, 1142-1150. https://doi.org/10.1016/j.conbuildmat.2012.09.102.
  28. Kawashima, S., Seo, J.W.T., Corr, D., Hersam, M.C. and Shah, S.P. (2014), "Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash-cement systems", Mater. Struct., 47(6), 1011-1023. https://doi.org/10.1617/s11527-013-0110-9.
  29. Ku, H., Wang, H., Pattarachaiyakoop, N. and Trada, M. (2011), "A review on the tensile properties of natural fiber reinforced polymer composites", Compos., 42(4), 856-873. https://doi.org/10.1016/j.compositesb.2011.01.010
  30. Kuila, T., Bose, S., Hong, C.E., Uddin, M.E., Khanra, P., Kim, N.H. and Lee, J.H. (2011), "Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method", Carbon, 49(3), 1033-1037. https://doi.org/10.1016/j.carbon.2010.10.031Get.
  31. Kwan, A.K.H. and McKinley, M. (2014), "Packing density and filling effect of limestone fines," Adv. Concrete Constr., 2(3), 209-227. https://doi.org/10.12989/acc.2014.2.3.209.
  32. Li, W., Li, X., Chen, S.J., Liu, Y.M., Duan, W.H. and Shah, S.P. (2017), "Effects of graphene oxide on earlyage hydration and electrical resistivity of Portland cement paste", Constr. Build. Mater., 136, 506-514. https://doi.org/10.1016/j.conbuildmat.2017.01.066.
  33. Li, Z., Wang, H., He, S., Lu, Y. and Wang, M. (2006), "Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite", Mater. Lett., 60(3), 356-359. https://doi.org/10.1016/j.matlet.2005.08.061.
  34. Libre, N.A., Shekarchi, M., Mahoutian, M. and Soroushian, P. (2011), "Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice", Constr. Build. Mater., 25(5), 2458-2464. https://doi.org/10.1016/j.conbuildmat.2010.11.058.
  35. Low, N.M. and Beaudoin, J.J. (1992), "Mechanical properties of high performance cement binders reinforced with wollastonite micro-fibres", Cement Concrete Res., 22(5), 981-989. https://doi.org/10.1016/0008-8846(92)90122-C.
  36. Ma, Y., Zhu, B., Tan, M. and Wu, K. (2004), "Effect of Y type polypropylene fiber on plastic shrinkage cracking of cement mortar", Mater. Struct., 37(2), 92-95. https://doi.org/10.1007/BF02486604.
  37. Mathur, R., Misra, A.K. and Goel, P. (2007), "Influence of wollastonite on mechanical properties of concrete", J. Sci. Res., 66, 1029-1034.
  38. Mazloom, M. and Miri, S.M. (2017), "Interaction of magnetic water, silica fume and superplasticizer on fresh and hardened properties of concrete", Adv. Concrete Constr., 5(2), 87-99. https://doi.org/10.12989/acc.2017.5.2.087.
  39. Mazloom, M., Ramezanianpour, A.A. and Brooks, J.J. (2004), "Effect of silica fume on mechanical properties of high-strength concrete", Cement Concrete Compos., 26(4), 347-357. https://doi.org/10.1016/S0958-9465(03)00017-9.
  40. Mohammed, A., Sanjayan, J.G., Duan, W.H and Nazari, A. (2015), "Incorporating graphene oxide in cement composites: A study of transport properties", Constr. Build. Mater., 84, 341-347. https://doi.org/10.1016/j.conbuildmat.2015.01.083.
  41. Monteny, J., De Belie, N. and Taerwe, L. (2003), "Resistance of different types of concrete mixtures to sulfuric acid", Mater. Struct., 36(4), 242-249. https://doi.org/10.1007/BF02479618.
  42. O z, H.O . and Gunes, M. (2021), "The effects of synthetic wollastonite developed with calcite and quartz on high performance mortars", Struct. Concrete, 22, E257-E272. https://doi.org/10.1002/suco.201900520.
  43. Parande, A.K. (2013), "Role of ingredients for high strength and high performance concrete-A review", Adv. Concrete Constr., 1(2), 151. https://doi.org/10.12989/acc.2013.1.2.151.
  44. Potts, J.R., Dreyer, D.R., Bielawski, C.W. and Ruoff, R.S. (2011), "Graphene-based polymer nanocomposites", Polym., 52(1), 5-25. https://doi.org/10.1016/j.polymer.2010.11.042.
  45. Ransinchung, R.N. and Kumar, B. (2009), "Investigations on pastes and mortars of ordinary portland cement admixed with wollastonite and microsilica", J. Mater. Civ. Eng., 22(4), 305-313. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000019.
  46. Rattanasak, U. and Chindaprasirt, P. (2015), "Properties of alkali activated silica fume-Al(OH)3-fluidized bed combustion fly ash composites", Mater. Struct., 48(3), 531-540. https://doi.org/10.1617/s11527-014-0413-5.
  47. Roy, R., Mitra, A., Ganesh, A.T and Sairam, V. (2018), "Effect of graphene oxide nanosheets dispersion in cement mortar composites incorporating metakaolin and silica fume", Constr. Build. Mater., 186, 514-524. https://doi.org/10.1016/j.conbuildmat.2018.07.135.
  48. Roy, R., Roy, R.A. and Roy, D.M. (1986), "Alternative perspectives on "quasi-crystallinity": Non-uniformity and nanocomposites", Mater. Lett., 4(8-9), 323-328. https://doi.org/10.1016/0167-577X(86)90063-7.
  49. Siddique, R. (2011), "Utilization of silica fume in concrete: Review of hardened properties", Resour. Conserv. Recyl., 55(11), 923-932. https://doi.org/10.1016/j.resconrec.2011.06.012.
  50. Soliman, A.M. and Nehdi, M.L. (2014), "Effects of shrinkage reducing admixture and wollastonite microfiber on early-age behavior of ultra-high performance concrete", Cement Concrete Compos., 46, 81-89. https://doi.org/10.1016/j.cemconcomp.2013.11.008.
  51. Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength properties of nylon-and polypropylene-fiber-reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033.
  52. Sun, Y.F., Zhou, T.S., Gao, P.W., Chen, M., Liu, H.W. and Xun, Y. (2019), "Microstructure and microwave absorption properties of cement-based material reinforced with reduced graphene oxide and nanoparticles", Strength Mater., 51(4), 601-608. https://doi.org/10.1007/s11223-019-00106-4.
  53. Tasdemir, C. (2003), "Combined effects of mineral admixtures and curing conditions on the sorptivity coefficient of concrete", Cement Concrete Res., 33(10), 1637-1642. https://doi.org/10.1016/S0008-8846(03)00112-1.
  54. Tong, T., Fan, Z., Liu, Q., Wang, S., Tan, S. and Yu, Q. (2016), "Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro-and macro-properties of cementitious materials", Constr. Build. Mater., 106, 102-114. https://doi.org/10.1016/j.conbuildmat.2015.12.092.
  55. Trasferetti, B.C., Gelamo, R.V., Rouxinol, F.P., Bica de Moraes, M.A., Goncalves, M.D.C. and Davanzo, C.U. (2004), "Nanocomposites of amorphous hydrogenated carbon and siloxane networks produced by PECVD", Chem. Mater., 16(4), 567-569. https://doi.org/10.1021/cm0348139.
  56. Viswanathan, V., Laha, T., Balani, K., Agarwal, A. and Seal, S. (2006), "Challenges and advances in nanocomposite processing techniques", Mater. Sci. Eng., 54(5-6), 121-285. https://doi.org/10.1016/j.mser.2006.11.002.
  57. Wahab, M.A., Latif, I.A., Kohail, M. and Almasry, A (2017), "The use of Wollastonite to enhance the mechanical properties of mortar mixes", Constr. Build. Mater., 152, 304-309. https://doi.org/10.1016/j.conbuildmat.2017.07.005.
  58. Wang, Q., Wang, J., Lu, C.X., Liu, B.W., Zhang, K. and Li, C.Z. (2015), "Influence of graphene oxide additions on the microstructure and mechanical strength of cement", New Carbon Mater., 30(4), 349-356. https://doi.org/10.1016/S1872-5805(15)60194-9.
  59. Wang, X.H., Jacobsen, S., Lee, S.F., He, J.Y. and Zhang, Z.L. (2010), "Effect of silica fume, steel fiber and ITZ on the strength and fracture behavior of mortar", Mater. Struct., 43(1-2), 125. https://doi.org/10.1617/s11527-009-9475-1.
  60. Wong H.S. and Razak H.A. (2005), "Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance", Cement Concrete Res., 35(4), 696-702. https://doi.org/10.1016/j.cemconres.2004.05.051.
  61. Xu, Y., Zeng, J., Chen, W., Jin, R., Li, B. and Pan, Z. (2018), "A holistic review of cement composites reinforced with graphene oxide", Constr. Build. Mater., 171, 291-302. https://doi.org/10.1016/j.conbuildmat.2018.03.147.
  62. Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W. and Voon, C.H. (2017), "Synthesis of graphene oxide using modified hummers method: solvent influence", Proc. Eng., 184, 469-477. https://doi.org/10.1016/j.proeng.2017.04.118.
  63. Zhang, Y., Zhang, W. and Zhang, Y. (2019), "Combined effect of fine aggregate and silica fume on properties of Portland cement pervious concrete", Adv. Concrete Constr., 8(1), 47-54. https://doi.org/10.12989/acc.2019.8.1.047.
  64. Zheng, J., An X. and Wu Q. (2015), "Numerical pressure threshold method to simulate cement paste slump flow", Mater. Struct., 48(7), 2063-2081. https://doi.org/10.1617/s11527-014-0293-8.
  65. Zhou, R., Lai, X., Li, H., Tang, S. and Zeng, X. (2014), "Enhancement of wollastonite on flame retardancy and mechanical properties of PP/IFR composite", Polym. Compos., 35(1), 158-166. https://doi.org/10.1002/pc.22645.
  66. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruoff, R.S. (2010), "Graphene and graphene oxide: synthesis, properties, and applications", Adv. Mater., 22(35), 3906-3924. https://doi.org/10.1002/adma.201001068.