DOI QR코드

DOI QR Code

Wavelet 기반의 영상 디테일 향상 잡음 제거 네트워크

WDENet: Wavelet-based Detail Enhanced Image Denoising Network

  • 정군 (한양대학교 융합전자공학부) ;
  • 위승우 (한양대학교 융합전자공학부) ;
  • 정제창 (한양대학교 융합전자공학부)
  • 투고 : 2021.09.06
  • 심사 : 2021.11.11
  • 발행 : 2021.11.30

초록

현재 카메라 성능이 점점 발전해 왔지만 카메라로부터 얻은 디지털 영상에는 잡음 (Noise)이 존재하고 이는 높은 해상도의 영상을 획득하는 데 있어서 방해요소로 작용한다. 전통적으로 잡음을 제거하기 위하여 필터링 방법을 사용해 왔고 최근 딥 러닝 기법의 하나인 합성곱 신경망 (Convolutional Neural Network)은 영상 잡음 제거 분야에서 전통적인 기법보다 좋은 성능을 나타내고 있어 많은 연구가 진행되고 있다. 하지만 합성곱 신경망으로 학습하는 과정에서 영상 내 디테일한 부분이 손실될 수 있는 문제점이 있다. 본 논문에서는 웨이블릿 변환 (Wavelet Transform)을 기반으로 영상 내 디테일 정보도 같이 학습하여 영상 디테일을 향상하는 잡음 제거 합성곱 신경망 네트워크를 제안한다. 제안하는 네트워크는 디테일 향상 서브 네트워크 (Detail Enhancement Subnetwork)와 영상 잡음 추출 서브 네트워크 (Noise Extraction Subnetwork)를 이용하게 된다. 실험은 가우시안 잡음과 실제 카메라 잡음을 통해 진행했고 제안하는 방법은 기존 알고리듬보다 디테일 손실 문제를 효과적으로 해결할 수 있었고 객관적 품질 평가와 주관적 품질 비교에서 모두 우수한 결과가 나온 것을 확인하였다.

Although the performance of cameras is gradually improving now, there are noise in the acquired digital images from the camera, which acts as an obstacle to obtaining high-resolution images. Traditionally, a filtering method has been used for denoising, and a convolutional neural network (CNN), one of the deep learning techniques, has been showing better performance than traditional methods in the field of image denoising, but the details in images could be lost during the learning process. In this paper, we present a CNN for image denoising, which improves image details by learning the details of the image based on wavelet transform. The proposed network uses two subnetworks for detail enhancement and noise extraction. The experiment was conducted through Gaussian noise and real-world noise, we confirmed that our proposed method was able to solve the detail loss problem more effectively than conventional algorithms, and we verified that both objective quality evaluation and subjective quality comparison showed excellent results.

키워드

과제정보

이 연구는 2021년도 산업통상자원부 및 한국산업기술평가관리원 (KEIT) 연구비 지원에 의한 연구임 ('20013726').

참고문헌

  1. Buades, B. Coll, and J.M. Morel, "A non-local algorithm for image denoising," Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Vol. 2, San Diego, CA, USA, pp. 60-65, 2005.
  2. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering," IEEE Transactions on Image Processing, Vol. 16, No. 8, pp. 2080-2095, August 2007. https://doi.org/10.1109/TIP.2007.901238
  3. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, "Non-local Sparse Models for Image Restoration," IEEE International Conference on Computer Vision, Kyoto, Japan, pp. 2272-2279, 2009.
  4. W. Dong, L. Zhang, G. Shi, and X. Li, "Nonlocally Centralized Sparse Representation for Image Restoration," IEEE Transactions on Image Processing, Vol. 22, No. 4, pp. 1620-1630, April 2013. https://doi.org/10.1109/TIP.2012.2235847
  5. S. Gu, L. Zhang, W. Zuo, and X. Feng, "Weighted Nuclear Norm Minimization with Application to Image Denoising," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, pp. 2862-2869, 2014.
  6. K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," Proceedings IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 770-778, 2016.
  7. S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," International Conference on Machine Learning, Lille, France, pp. 448-456, 2015.
  8. V. Nair and G. E. Hinton, "Rectified Linear Units Improve Restricted Boltzmann Machines," International Conference on Machine Learning, Haifa, Israel, pp. 807-812, 2010.
  9. K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising," IEEE Transactions on Image Processing, Vol. 26, No. 7, pp. 3142-3155, July 2017. https://doi.org/10.1109/TIP.2017.2662206
  10. K. Zhang, W. Zuo, and L. Zhang, "FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising," IEEE Transactions on Image Processing, Vol. 27, No. 9, pp. 4608-4622, September 2018. https://doi.org/10.1109/TIP.2018.2839891
  11. K. Zhang, W. Zuo, S. Gu, and L. Zhang, "Learning Deep CNN Denoiser Prior for Image Restoration," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, pp. 3929-3938, 2017.
  12. O. Ronneberger, P. Fischer, and T. Brox, "Unet: Convolutional Networks for Biomedical Image Segmentation," Proceeding of Medical Image Computer-Assisted Intervention, Berlin, Heidelberg, pp. 234-241, 2015.
  13. A. Abdelhamed, S. Lin, and M. S. Brown, "A high-Quality Denoising Dataset for Smartphone Cameras," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp.1692-1700, 2018.
  14. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going Deeper With Convolutions," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 1-9, 2015.
  15. K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-scale Image Recognition," Proceeding of the International Conference on Learning Representations, San Diego, CA, USA, pp. 1-14, 2015.
  16. K. H. Talukder and K. Harada, "Haar Wavelet Based Approach for Image Compression and Quality Assessment of Compressed Image," arXiv preprint arXiv:1010.4084, 2010.
  17. R. Timofte, E. Agustsson, L. Van Gool, M. H. Yang, and L. Zhang, "Ntire 2017 Challenge on Single Image Super-Resolution: Methods and Results," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, pp. 114-125, 2017.
  18. S. Roth, and M. J. Black, "Fields of Experts: A Framework for Learning Image Priors," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, San Diego, CA, USA, pp.860-867, 2005.
  19. C. Tian, Y. Xu, Z. Li, W. Zuo, L. Fei, and H. Liu, "Attention-guided CNN for Image Denoising," Neural Networks, Vol. 124, pp. 117-129, April, 2020. https://doi.org/10.1016/j.neunet.2019.12.024
  20. S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang, "Toward Convolutional Blind Denoising of Real Photographs," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, pp.1712-1722, 2019.
  21. Z. Yue, H. Yong, Q. Zhao, L. Zhang, and D. Meng, "Variational Denoising Network: Toward Blind Noise Modeling and Removal," arXiv preprint arXiv:1908.11314, 2019.
  22. Y. Kim, J. W. Soh, G. Y. Park, and N. I, Cho, "Transfer Learning from Synthetic to Real-Noise Denoising with Adaptive Instance Normalization," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, pp. 3482-3492, 2020.