DOI QR코드

DOI QR Code

3D DCT를 활용한 포인트 클라우드의 움직임 예측 및 보상 기법

Point Cloud Video Codec using 3D DCT based Motion Estimation and Motion Compensation

  • Lee, Minseok (Department of Electronic Engineering, Kyung Hee University) ;
  • Kim, Boyeun (Department of Electronic Engineering, Kyung Hee University) ;
  • Yoon, Sangeun (Department of Electronic Engineering, Kyung Hee University) ;
  • Hwang, Yonghae (Department of Electronic Engineering, Kyung Hee University) ;
  • Kim, Junsik (Department of Electronic Engineering, Kyung Hee University) ;
  • Kim, Kyuheon (Department of Electronic Engineering, Kyung Hee University)
  • 투고 : 2021.09.03
  • 심사 : 2021.11.02
  • 발행 : 2021.11.30

초록

최근 3차원 스캐너 등을 이용한 3차원 영상 획득 기술이 발전함에 따라 AR(Augmented Reality)/VR(Virtual Reality) 분야에서 활용되는 콘텐츠가 다양해졌다. 이러한 3차원 영상을 나타내는 방식에는 여러 가지가 존재하며, 포인트 클라우드는 그중 하나다. 포인트 클라우드는 3차원 공간에 존재하는 물체를 표현하는 점들의 집합을 의미하고, 실제 객체를 촬영하여 정밀하게 데이터를 획득 및 표현할 수 있다는 장점이 있다. 하지만, 3차원 영상의 특성상 2차원 영상보다는 표현해야 하는 데이터가 많고, 특히 여러 장의 프레임으로 구성된 동적인 3차원 객체는 더욱 많은 데이터를 요구하기에 이를 효율적으로 다루기 위한 고효율의 압축 기술이 개발되어야 한다. 본 논문에서는 도메인 변환 방법인 3D DCT(3-Dimensional Discrete Cosine Transform)를 이용한 움직임 예측을 통하여 포인트 클라우드 영상의 I 프레임 및 P 프레임을 효율적으로 압축하는 기술을 제안한다. 그리고 본 논문에서 제안된 기술과 Intra 프레임 기반의 배경 기술 및 2D DCT 기반의 V-PCC(Video-based Point Cloud Compression)와의 비교를 통해 제안 기술의 압축 성능을 확인한다.

Due to the recent developments of attaining 3D contents by using devices such as 3D scanners, the diversity of the contents being used in AR(Augmented Reality)/VR(Virutal Reality) fields is significantly increasing. There are several ways to represent 3D data, and using point clouds is one of them. A point cloud is a cluster of points, having the advantage of being able to attain actual 3D data with high precision. However, in order to express 3D contents, much more data is required compared to that of 2D images. The size of data needed to represent dynamic 3D point cloud objects that consists of multiple frames is especially big, and that is why an efficient compression technology for this kind of data must be developed. In this paper, a motion estimation and compensation method for dynamic point cloud objects using 3D DCT is proposed. This will lead to switching the 3D video frames into I frames and P frames, which ensures higher compression ratio. Then, we confirm the compression efficiency of the proposed technology by comparing it with the anchor technology, an Intra-frame based compression method, and 2D-DCT based V-PCC.

키워드

과제정보

This research was supported by the This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2021-0-02046) supervised by the IITP and the Institute of Information & communications Technology Planning & evaluation (IITP) (Grant number: 2020-0-00452).

참고문헌

  1. Doohwan Kim, Jiheon Im, Kyuheon Kim, "MPEG-DASH based 3D point cloud content configuration method," 2019 Journal of Broadcast Engineering, Vol.24, No.4, pp.660-669, July 2019.
  2. Yonghae Hwang, Junsik Kim, Kyuheon Kim, "A method of density scalability using SHVC codec in Video based Point Cloud Compression," 2020 The Korean Institute of Broadcast and Media Engineers Summer Conference, Korea, pp.383-387, 2020.
  3. Jiheon Im, Junsik Kim, Sungryeul Rhyu, Kyuheon Kim, "A method of level of details control table for 3D point density scalability in video based point cloud compression," Proc. SPIE 11137, Applications of Digital Image Processing XLII, 111371A, 2019.
  4. Kwijung Nam, et al, "Comparative Experiment of 2D and 3D DCT Point Cloud Compression," 2021 Journal of Broadcast Engineering, Vol.26, No.5, pp.553-565, September 2021.
  5. Huffman, D.A. A method for the construction of minimum redundancy codes. In Proceedings IRE, vol. 40, pp. 1098-1101, 1962.
  6. G. J. Sullivan, et al., "Overview of the High Efficiency Video Coding(HEVC) Standard," IEEE Trans. Circuits Syst. Video Technol., vol.' 22, No. 12, pp. 1649-1668. December. 2012. https://doi.org/10.1109/TCSVT.2012.2221191
  7. Hilbert, "D. Uber die stetige Abbildung einer Linieauf ein Flachenstuck," Mathematische Annalen 38, pp. 459-460, 1891. https://doi.org/10.1007/BF01199431
  8. J.B. O'Neil, "Entropy coding in speech and television differential PCM systems", Journal of IEEE Transactions on Information Theory, vol. 17, no. 6 pp.758-761, November 1971. https://doi.org/10.1109/TIT.1971.1054706
  9. E. Yang and L. Wang, "Joint Optimization of Run-Length Coding, Huffman Coding, and Quantization Table With Complete Baseline JPEG Decoder Compatibility" Journal of IEEE Transactions on Image Processing, vol. 18, no. 1, pp. 63-74, January 2009. https://doi.org/10.1049/iet-ipr.2008.0046
  10. Junsik Kim, Jiheon Im, Sungryeul Rhyu, Kyuheon Kim, "3D motion and compensation method for video-based point cloud compression," IEEE Access, vol. 8, 9082657, pp. 83538-83547, 2020. https://doi.org/10.1109/access.2020.2991478
  11. Common Test Conditions for PCC, document, ISO/IEC JTC1/SC29/WG11 MPEG, N17766, 3D Graphics, Jul.2018.
  12. G. Bjontegaard, "Calculation of average PSNR differences between RD-curves," Document VCEG-M33, Austin, Texas, USA, Apr. 2001.
  13. D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, "Geometric distortion metrics for point cloud compression," IEEE Int. Conf. Image Process. (ICIP), pp. 3460-3464, 2017.
  14. Detlev Marpe, et al, "Context-Based Adaptive Binary Arithmetic Coding in the H.264/AVC Video Compression Standard," IEEE Trans. Circuits Syst. Video Technol., vol. X, No. Y, pp. 1-18. 2003.