DOI QR코드

DOI QR Code

Changes in Hardness and Thermal Conductivity with Volume Fraction of Discontinuous Precipitates in Mg-Al Alloy

Mg-Al 합금에서 불연속 석출물의 부피 분율에 의한 경도 및 열전도도의 변화

  • Jun, Joong-Hwan (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 산업소재공정연구부문)
  • Received : 2021.10.04
  • Accepted : 2021.10.21
  • Published : 2021.11.30

Abstract

The aim of this study was to investigate the dependence of the hardness and thermal conductivity on the volume fraction of discontinuous precipitates (DPs) in the Mg-9.3%Al alloy with (α-(Mg)+DPs) dual phase structure. In order to obtain various DPs volume fractions, the alloy was solution-treated at 688 K for 24 h and then aged at 418 K for up to 144 h. The volume fraction of DPs increased from 0% to 63% with an increase in the aging time up to 72 h, over which, continuous precipitation was observed within the α-(Mg) grains. It is noticeable that the hardness and thermal conductivity of the alloy increased linearly with the volume fraction of DPs. The improved hardness and thermal conductivity with respect to volume fraction of DPs are closely associated with the higher hardness of the DPs with fine (α+β) lamellar structure and the lower Al concentration in the α phase layer of the DPs, respectively.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1049912).

References

  1. H. Cao and M. Wessen : Metall. Mater. Trans. A 35A (2004) 309.
  2. W. Zhang, S. Li, B. Tang, and D. Zeng : China Found. 3 (2006) 270.
  3. C. H. Caceres, C. J. Davidson, J. R. Griffiths, and C. L. Newton : Mater. Sci. Eng. A 325 (2002) 344. https://doi.org/10.1016/S0921-5093(01)01467-8
  4. J. Majhi, S. Ganguly, A. Basu, and A. K. Mondal : J. Alloy. Comp. 873 (2021) 159600. https://doi.org/10.1016/j.jallcom.2021.159600
  5. T. Zhang, G. Meng, Y. Shao, Z. Cui, and F. Wang : Corros. Sci. 53 (2011) 2934. https://doi.org/10.1016/j.corsci.2011.05.035
  6. M. Zhang, W. Li, J. Zhao, and M. Chen : J. Mater. Res. Tech. 9 (2020) 5194. https://doi.org/10.1016/j.jmrt.2020.03.036
  7. Z. Hu, R. L. Liu, S. K. Kairy, X. Li, H. Yan, and N. Birbilis : Corros. Sci. 149 (2019) 144. https://doi.org/10.1016/j.corsci.2019.01.024
  8. K. M. Asl, A. Tari, and F. Khomamizadeh : Mater. Sci. Eng. A 523 (2009) 1. https://doi.org/10.1016/j.msea.2009.06.048
  9. Y. Chen, H. Liu, R. Ye, and G. Liu : Mater. Sci. Eng. A 587 (2013) 262. https://doi.org/10.1016/j.msea.2013.07.092
  10. Y. Turen : Mater. Des. 49 (2013) 1009. https://doi.org/10.1016/j.matdes.2013.02.037
  11. H. Pan, F. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao, and A. Tang : J. Mater. Sci. 49 (2014) 3107. https://doi.org/10.1007/s10853-013-8012-3
  12. T. Ying, M.Y. Zheng, Z. T. Li, and X. G. Qiao : J. Alloy. Comp. 608 (2014) 19. https://doi.org/10.1016/j.jallcom.2014.04.107
  13. H. Pan, F. Pan, X. Wang, J. Peng, J. Guo, J. She, and A. Tang : Int. J. Thermophys. 34 (2013) 1336. https://doi.org/10.1007/s10765-013-1490-3
  14. D. Wan, J. Wang, G. Wang, and G. Yang : Mater. Lett. 63 (2009) 391. https://doi.org/10.1016/j.matlet.2008.10.056
  15. J. Wang, R. Lu, D. Qin, X. Huang, and F. Pan : Mater. Sci. Eng. A 560 (2013) 667. https://doi.org/10.1016/j.msea.2012.10.010
  16. K. N. Braszczynska-Malik : J. Alloy. Comp. 477 (2009) 870. https://doi.org/10.1016/j.jallcom.2008.11.008
  17. J. D. Robson : Acta Mater. 61 (2013) 7781. https://doi.org/10.1016/j.actamat.2013.09.017
  18. S. Takeshita, C. Watanabe, R. Monzen, and S. Saikawa : J. Jpn. Inst. Light Met. 64 (2014) 470. https://doi.org/10.2464/jilm.64.470
  19. K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani, and S. Ikeno : Mater. Trans. 52 (2011) 340. https://doi.org/10.2320/matertrans.MB201021
  20. M. X. Zhang and P. M. Kelly : Scripta Mater. 48 (2003) 647. https://doi.org/10.1016/S1359-6462(02)00555-9
  21. S. Celotto : Acta Mater. 48 (2000) 1775. https://doi.org/10.1016/S1359-6454(00)00004-5
  22. J. H. Jun : J. Alloy. Comp. 75 (2017) 237. https://doi.org/10.1016/j.jallcom.2017.07.147
  23. J. H. Jun : Arch. Metall. Mater. 64 (2019) 1183.
  24. A. Rudajevova, M. Stanek, and P. Lukac : Mater. Sci. Eng. A 341 (2003) 152. https://doi.org/10.1016/S0921-5093(02)00233-2
  25. J. Leitner, P. Vonka, D. Sedmidubsky, and P. Svoboda : Thermochim. Acta 497 (2010) 7. https://doi.org/10.1016/j.tca.2009.08.002
  26. A. Lindemann, J. Schmidt, M. Todte, and T. Zeuner : Thermochim. Acta 382 (2002) 269. https://doi.org/10.1016/S0040-6031(01)00752-3
  27. S. I. Abu-Eishah, Y. Haddad, A. Solieman, and A. Bajbouj : Latin American Appl. Res. 34 (2004) 257.
  28. D. Duly, Y. Brechet, and B. Chenal : Acta Metall. Mater. 40 (1992) 2289. https://doi.org/10.1016/0956-7151(92)90147-7
  29. D. Bradai, M. Kadi-Hanifi, P. Zieba, W. M. Kuschke, and W. West : J. Mater. Sci. 34 (1999) 5331. https://doi.org/10.1023/A:1004753122411
  30. S. Li, X. Yang, J. Hou, and W. Du : J. Magnes. Alloy 8 (2020) 78. https://doi.org/10.1016/j.jma.2019.08.002
  31. A. R. Eivani, H. Ahmed, J. Zhou, and J. Duszczyk : Metall. Mater. Trans. A 40 (2009) 2435. https://doi.org/10.1007/s11661-009-9917-y
  32. C. Su, D. Li, T. Ying, L. Zhou, L. Li, and X. Zeng : J. Alloy. Comp. 685 (2016) 114. https://doi.org/10.1016/j.jallcom.2016.05.261
  33. C. Wang, Z. Cui, H. Liu, Y. Chen, W. Ding, and S. Xiao : Mater. Des. 84 (2015) 48. https://doi.org/10.1016/j.matdes.2015.06.110