DOI QR코드

DOI QR Code

Toxicity Evaluation of Single and Binary Mixture of Heavy Metals on the Growth and Phosphorus Removal Ability of Bacillus sp.

Bacillus sp.의 생장과 인 제거능에 대한 단일 및 2종 혼합 중금속의 독성 평가

  • Kim, Deok-Won (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Park, Ji-Su (Field Quality Control Gimcheon part, Doosan Corporation Electro-Materials) ;
  • Oh, Eun-Ji (Water and Land Research Group/Division for Natural Environment, Korea Environment Institute) ;
  • Yoo, Jin (Indoor Environment Division, Incheon Research Institude of Public Health and Environment) ;
  • Kim, Deok-Hyeon (National Institute of Environmental Research) ;
  • Chung, Keun-Yook (Department of Environmental and Biological Chemistry, Chungbuk National University)
  • 김덕원 (충북대학교 환경생명화학과) ;
  • 박지수 (두산전자 Field Quality Control 김천part) ;
  • 오은지 (한국환경연구원 자연환경연구실) ;
  • 유진 (인천광역시 보건환경연구원 생활환경과) ;
  • 김덕현 (국립환경과학원 토양지하수과) ;
  • 정근욱 (충북대학교 환경생명화학과)
  • Received : 2021.09.30
  • Accepted : 2021.11.19
  • Published : 2021.11.30

Abstract

In this study, the effects of single and binary heavy metals toxicity on the growth and phosphorus removal ability of Bacillus sp.. known as be a phosphorus-removing microorganism, were quantitatively evaluated. Cd, Cu, Zn, Pb, Ni were used as heavy metals. As a result of analysis of variance of the half of inhibition concentration and half of effective concentration for each single heavy metal treatment group, the inhibitory effect on the growth of Bacillus sp. was Ni < Pb < Zn < Cu < Cd. And the inhibitory effect on phosphorus removal by Bacillus sp. was Ni < Pb < Zn < Cu < Cd. When analyzing the correlation between growth inhibition and phosphorus removal efficiency of a single heavy metal treatment group, a negative correlation was found (R2 = 0.815), and a positive correlation was found when the correlation between IC50 and EC50 was analyzed (R2 = 0.959). In all binary heavy metal treatment groups, the interaction was an antagonistic effect when evaluated using the additive toxicity index method. This paper is considered to be basic data on the toxic effects of heavy metals when phosphorus is removed using phosphorus removal microorganisms in wastewater.

Keywords

Acknowledgement

본 연구는 한국연구재단의 이공분야기초연구사업 연구비지원 (과제번호 2019R1F1A1063252)에 의해 수행되었습니다.

References

  1. Abou-Shanab, R. A. I., Van Berkum, P., Angle, J. S., 2007, Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale, Chemosphere., 68, 360-367. https://doi.org/10.1016/j.chemosphere.2006.12.051
  2. Andini, S., Araya-Cloutier, C., Lay, B., Vreeke, G., Hageman, J., Vincken, J. P., 2021, QSAR-based physicochemical properties of isothiocyanate antimicrobials against gram-negative and gram-positive bacteria, LWT., 144, 111222. https://doi.org/10.1016/j.lwt.2021.111222
  3. Asami, A., Suzuki, N., Nakanishi, J., 1996, Aquatic toxicity emission from Tokyo: Wastewater measured using marine luminescent bacterium, Photobacterium phosphoreum, Wat. Sci. Tech., 33, 121-128. https://doi.org/10.1016/0273-1223(96)00287-9
  4. Brown, A. M., 2001, A Step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet, Computer methods and programs in biomedicine., 65, 191-200. https://doi.org/10.1016/S0169-2607(00)00124-3
  5. Chen, C. Y., Huang, J. B., Chen, S. D., 1997, Assessment of the Microtox toxicity test and its application for industrial wastewater, Wat. Sci. Tech., 36, 375-382. https://doi.org/10.2166/wst.1997.0467
  6. Comeau, Y., Hall, K. J., Hancock, R. E. W., Oldham, W. K., 1986, Biochemical model for enhanced biological phosphorus removal, Water research., 20, 1511-1521. https://doi.org/10.1016/0043-1354(86)90115-6
  7. Drizo, A., Frost, C. A., Grace, J., Smith, K. A., 1999, Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems, Water Research., 33, 3595-3602. https://doi.org/10.1016/S0043-1354(99)00082-2
  8. George, F., Mahieux, S., Daniel, C., Titecat, M., Beauval, N., Houcke, I., Neut, C., Allorge, D., Borges, F., Jan, G., Foligne, B., Garat, A., 2021, Assessment of Pb (II), Cd (II), and Al (III) removal capacity of bacteria from food and gut ecological niches: Insights into biodiversity to limit Intestinal biodisponibility of toxic metals, Microorganisms., 9, 456. https://doi.org/10.3390/microorganisms9020456
  9. Izadi, P., Izadi, P., Eldyasti, A., 2021, Understanding microbial shift of enhanced biological phosphorus removal process (EBPR) under different dissolved oxygen (DO) concentrations and hydraulic retention time (HRTs), Biochemical Engineering Journal, 166, 107833. https://doi.org/10.1016/j.bej.2020.107833
  10. Jiang, X., Pan, B., Sun, Z., Cao, L., Lu, Y., 2020, Application of taxonomic distinctness indices of fish assemblages for assessing effects of river-lake disconnection and eutrophication in floodplain lakes, Ecological Indicators., 110, 105955. https://doi.org/10.1016/j.ecolind.2019.105955
  11. Khoshmanesh, A., Hart, B. T., Duncan, A., Beckett, R., 2002, Luxury uptake of phosphorus by sediment bacteria, Water Res., 36, 774-778. https://doi.org/10.1016/S0043-1354(01)00272-X
  12. Kim, D. H., Yoo, J., Chung, K. Y., 2016, Toxic effects of binary mixtures of heavy metals on the growth and P removal efficiencies of Alcaligenes sp., Korean Journal of Environmental Agriculture., 35(1), 79-86. https://doi.org/10.5338/KJEA.2016.35.1.09
  13. Kim, H. J., Lee, S. E., Hong, H. K., Kim, D. H., An, J. W., Choi, J. S., Nam, J. H., Lee, M. S., Woo, S. H., Chung, K. Y., 2012, Phosphorus removal characteristics by bacteria isolated from industrial wastewater, Korean Journal of Environmental Agriculture, 31, 185-191. https://doi.org/10.5338/KJEA.2012.31.2.185
  14. Kim, T. K., Kim, J. H., Song, J. Y., 2015, A Study on the removal of phosphorus from wastewater by redox reaction of Cu-Zn metal alloy, Journal of the Korean Applied Science and Technology, 32, 78-84.
  15. Kong, I. C., 2013, Joint effects of heavy metal binary mixtures on seed germination, root and shoot growth, bacterial bioluminescence, and gene mutation, Journal of Environmental Science, 25, 889-894. https://doi.org/10.1016/s1001-0742(12)60174-0
  16. Kristiansen, R., Nguyen, H. T. T., Saunders, A. M., Nielsen, J. L., Wimmer, R., Le, V. Q., Nielsen, P. H., 2013, A Metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal, The ISME journal, 7, 543-554. https://doi.org/10.1038/ismej.2012.136
  17. Kwon, S., Choi, G. J., Kim, K. S., Kwon, H. J., 2014, Control of Botrytis cinerea and postharvest quality of cut roses by electron beam irradiation, Horticultural Science & Technology, 32, 507-516. https://doi.org/10.7235/hort.2014.14021
  18. Lange, J. H., Thomulka, K. W., Use of the Vibrio harveyi toxicity test for evaluating mixture interactions of nitrobenzene and dinitrobenzene, Ecotoxicol. Environ. Scf., 38, 2-12. https://doi.org/10.1006/eesa.1997.1546
  19. Li, Y., Shang, J., Zhang, C., Zhang, W., Niu, L., Wang, L., Zhang, H., 2021, The role of freshwater eutrophication in greenhouse gas emissions: A review, Science of The Total Environment, 144582.
  20. Lin, Y., Wang, L., Xu, K., Li, K., Ren, H., 2021, Revealing taxon-specific heavy metal-resistance mechanisms in denitrifying phosphorus removal sludge using genome-centric metaproteomics, Microbiome, 9, 1-17. https://doi.org/10.1186/s40168-020-00939-1
  21. Mai-Prochnow, A., Clauson, M., Hong, J., Murphy, A. B., 2016, Gram positive and gram negative bacteria differ in their sensitivity to cold plasma, Scientific reports, 6, 1-11. https://doi.org/10.1038/s41598-016-0001-8
  22. Meynard, A., Espinoza-Gonzalez, C., Nunez, A., Castaneda, F., Contreras-Porcia, L., 2021, Synergistic, antagonistic, and additive effects of heavy metals (copper and cadmium) and polycyclic aromatic hydrocarbons (PAHs) under binary and tertiary combinations in key habitat-forming kelp species of Chile, Environmental Science and Pollution Research, 28, 18300-18307. https://doi.org/10.1007/s11356-021-13261-6
  23. Mrafkova, L., Goi, D., Gallo, V., Colussi, I., 2003, Preliminary evaluation of inhibitory effects of some substances on aerobic and anaerobic treatment plant biomasses, Chemical and biochemical engineering quarterly, 17, 243-248.
  24. Mustafa, H. M., Hayder, G., 2021, Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article, Ain Shams Engineering Journal, 12, 355-365. https://doi.org/10.1016/j.asej.2020.05.009
  25. Newell, S. E., Davis, T. W., Johengen, T. H., Gossiaux, D., Burtner, A., Palladino, D., McCarthy, M. J., 2019, Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie, Harmful algae, 81, 86-93. https://doi.org/10.1016/j.hal.2018.11.003
  26. Poh, P. K., Ong, Y. H., Arumugam, K., Nittami, T., Yeoh, H. K., Bessarab, I., William, R., Chua, A. S. M., 2021, Tropical-based EBPR process: The long-term stability, microbial community and its response towards temperature stress, Water Environment Research.
  27. Prabhakaran, P., Ashraf, M. A., Aqma, W. S., 2016, Microbial stress response to heavy metals in the environment, Rsc. Advances, 6, 109862-109877. https://doi.org/10.1039/c6ra10966g
  28. Rajashekhar, M., Shahanaz, E., Vinay, K., 2017, Biochemical and molecular characterization of Bacillus spp. isolated from insects, J. Entomol. Zool. Stud., 5, 581-588.
  29. Roy, S., Guanglei, Q., Zuniga-Montanez, R., Williams, R. B., Wuertz, S., 2021, Recent advances in understanding the ecophysiology of enhanced biological phosphorus removal, Current Opinion in Biotechnology, 67, 166-174. https://doi.org/10.1016/j.copbio.2021.01.011
  30. Roy, S., Nirakar, P., Yong, N. H., Stefan, W., 2021, Denitrification kinetics indicates nitrous oxide uptake is unaffected by electron competition in accumulibacter, Water Research, 189, 116557. https://doi.org/10.1016/j.watres.2020.116557
  31. Sebaugh, J. L., 2011, Guidelines for accurate EC50/IC50 estimation, Pharmaceutical statistics, 10, 128-134. https://doi.org/10.1002/pst.426
  32. Sin, D. H., Kim, D. H., Kim, J. I., Lee, M. S., Chung, K. Y, 2013, Toxic effects of heavy metals on the growth and phosphorus removal efficiency of phosphorus accumulating microorganisms (PAOs), Korean Journal of Soil Science and Fertilizer, 46, 673-680. https://doi.org/10.7745/KJSSF.2013.46.6.673
  33. Song, W., Zheng, M. J., Li, H., Zheng, W., Guo, F., 2019, Profiling population-level diversity and dynamics of accumulibacter via high throughput sequencing of ppk1, Applied microbiology and biotechnology, 103, 9711-9722. https://doi.org/10.1007/s00253-019-10183-9
  34. van Hullebusch, E. D., Zandvoort, M. H., Lens, P. N., 2004, Nickel and cobalt sorption on anaerobic granular sludges: Kinetic and equilibrium studies, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 79, 1219-1227.
  35. Wang, Y., Hosomi, K., Shimoyama, A., Yoshii, K., Nagatake, T., Fujimoto, Y., Kiyono, H., Fukase, K., Kunisawa, J., 2021, Lipopolysaccharide derived from the lymphoid-resident commensal bacteria Alcaligenes faecalis functions as an effective nasal adjuvant to augment IgA antibody and Th17 cell responses, Frontiers in Immunology, 12, 2580.
  36. Yoo, J., Kim, D. H., Oh, E. J., Chung, K. Y., 2018, Quantifying the interactive inhibitory effect of heavy metals on the growth and phosphorus removal of pseudomonas taeanensis, Korean Journal of Soil Science and Fertilizer, 51, 35-49. https://doi.org/10.7745/KJSSF.2018.51.1.035
  37. Yun, J. J., Kang, S. W., Park, J. H., Seo, D. C., Kim, H. W., Cho, J. S., 2020, Assessment of seasonal variation in water quality in Daedong Lake, Korean Journal of Environmental Agriculture, 39, 197-203. https://doi.org/10.5338/KJEA.2020.39.3.23
  38. Zafiri, C., Kornaros, M., and Lyberatos, G., 1999, Kinetic modeling of biological phosphorus removal with a pure culture of Acinetobacter sp. under aerobic, anaerobic, and transient operating conditions, Water Res., 33, 2769-2788. https://doi.org/10.1016/S0043-1354(98)00522-3
  39. Zeb, B., Ping, Z., Mahmood, Q., Lin, Q., Pervez, A., Irshad, M., Bilal, M., Bhatti, Z. A., Shaheen, S., 2017, Assessment of combined toxicity of heavy metals from industrial wastewaters on Photobacterium phosphoreum T3S. Applied Water Science, 7, 2043-2050. https://doi.org/10.1007/s13201-016-0385-4
  40. Zuthi, M. F. R., Guo, W. S., Ngo, H. H., Nghiem, L. D., Hai, F. I., 2013, Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes. Bioresource Technology, 139, 363-374. https://doi.org/10.1016/j.biortech.2013.04.038