DOI QR코드

DOI QR Code

Synergy Effect of K Doping and Nb Oxide Coating on Li1.2Ni0.13Co0.13Mn0.54O2 Cathodes

  • Kim, Hyung Gi (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
  • Received : 2021.01.19
  • Accepted : 2021.03.08
  • Published : 2021.11.28

Abstract

The Li-rich oxides are promising cathode materials due to their high energy density. However, characteristics such as low rate capability, unstable cyclic performance, and rapid capacity fading during cycling prevent their commercialization. These characteristics are mainly attributed to the phase instability of the host structure and undesirable side reactions at the cathode/electrolyte interface. To suppress the phase transition during cycling and interfacial side reactions with the reactive electrolyte, K (potassium) doping and Nb oxide coating were simultaneously introduced to a Li-rich oxide (Li1.2Ni0.13Co0.13Mn0.54O2). The capacity and rate capability of the Li-rich oxide were significantly enhanced by K doping. Considering the X-ray diffraction (XRD) analysis, the interslab thickness of LiO2 increased and cation mixing decreased due to K doping, which facilitated Li migration during cycling and resulted in enhanced capacity and rate capability. The K-doped Li-rich oxide also exhibited considerably improved cyclic performance, probably because the large K+ ions disturb the migration of the transition metals causing the phase transition and act as a pillar stabilizing the host structure during cycling. The Nb oxide coating also considerably enhanced the capacity and rate capability of the samples, indicating that the undesirable interfacial layer formed from the side reaction was a major resistance factor that reduced the capacity of the cathode. This result confirms that the introduction of K doping and Nb oxide coating is an effective approach to enhance the electrochemical performance of Li-rich oxides.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korean government (MSIT) (No. 2020R1A2C1008370) and supported by the Technology Innovation Program (20007034) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was also supported by Kyonggi University's Graduate Research Assistantship 2020.

References

  1. M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, and S. A. Hackney, J. Mater. Chem., 2007, 17(30), 3112-3125. https://doi.org/10.1039/b702425h
  2. K. A. Jarvis, Z. Deng, L. F. Allard, A. Manthiram, and P. J. Ferreira, Chem. Mater., 2011, 23(16), 3614-3621. https://doi.org/10.1021/cm200831c
  3. H. Koga, L. Croguennec, M. Menetrier, P. Mannessiez, F. Weill, and C. Delmas, J. Power Sources, 2013, 236, 250-258. https://doi.org/10.1016/j.jpowsour.2013.02.075
  4. F. Fu, Y.-P. Deng, C.-H. Shen, G.-L. Xu, X.-X. Peng, Q. Wang, Y.-F. Xu, J.-C. Fang, L. Huang, and S.-G. Sun, Electrochem. commun., 2014, 44, 54-58. https://doi.org/10.1016/j.elecom.2014.04.013
  5. H. Yu and H. Zhou, J. Phys. Chem. Lett., 2013, 4(8), 1268-1280. https://doi.org/10.1021/jz400032v
  6. D. Luo, G. Li, X. Guan, C. Yu, J. Zheng, X. Zhang, and L. Li, J. Mater. Chem. A, 2013, 1(4), 1220-1227. https://doi.org/10.1039/C2TA00205A
  7. B. Song, H. Liu, Z. Liu, P. Xiao, M. O. Lai, and L. Lu, Sci. Rep., 2013, 3(1), 1-12.
  8. S. J. Shi, J. P. Tu, Y. Y. Tang, Y. X. Yu, Y. Q. Zhang, X. L. Wang, and C. D. Gu, J. Power Sources, 2013, 228, 14-23. https://doi.org/10.1016/j.jpowsour.2012.11.091
  9. H. Lee, S. B. Lim, J. Y. Kim, M. Jeong, Y. J. Park, and W. S. Yoon, ACS Appl. Mater. Interfaces, 2018, 10(13), 10804-10818. https://doi.org/10.1021/acsami.7b12722
  10. E. S. Lee and A. Manthiram, J. Mater. Chem. A, 2014, 2(11), 3932-3939. https://doi.org/10.1039/c3ta14975g
  11. M. Gu, A. Genc, I. Belharouak, D. Wang, K. Amine, S. Thevuthasan, D. R. Baer, J.-G. Zhang, N. D. Browning, J. Liu, and C. Wang, Chem. Mater., 2013, 25(11), 2319-2326. https://doi.org/10.1021/cm4009392
  12. A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S. H. Kang, M. M. Thackeray, and P. G. Bruce, J. Am. Chem. Soc., 2006, 128(26), 8694-8698. https://doi.org/10.1021/ja062027+
  13. D. Y. W. Yu and K. Yanagida, J. Electrochem. Soc., 2011, 158(9), A1015. https://doi.org/10.1149/1.3609849
  14. D. Mohanty, A. S. Sefat, S. Kalnaus, J. Li, R. A. Meisner, E. A. Payzant, D. P. Abraham, D. L. Wood, and C. Daniel, J. Mater. Chem. A, 2013, 1(20), 6249-6261. https://doi.org/10.1039/c3ta10304h
  15. B. Xu, C. R. Fell, M. Chi, and Y. S. Meng, Energy Environ. Sci., 2011, 4(6), 2223-2233. https://doi.org/10.1039/c1ee01131f
  16. J. Reed, G. Ceder, and A. Van Der Ven, Electrochem. Solid-State Lett., 2001, 4(6), A78. https://doi.org/10.1149/1.1368896
  17. W. He, D. Yuan, J. Qian, X. Ai, H. Yang, and Y. Cao, J. Mater. Chem. A, 2013, 1(37), 11397-11403. https://doi.org/10.1039/c3ta12296d
  18. M. N. Ates, Q. Jia, A. Shah, A. Busnaina, S. Mukerjee, and K. M. Abraham, J. Electrochem. Soc., 2014, 161(3), A290. https://doi.org/10.1149/2.040403jes
  19. J.-H. Park, J. Lim, J. Yoon, K.-S. Park, J. Gim, J. Song, H. Park, D. Im, M. Park, D. Ahn, Y. Paik, and J. Kim, Dalt. Trans., 2012, 41(10), 3053-3059. https://doi.org/10.1039/c2dt11833e
  20. Z. Zheng, X. D. Guo, Y. J. Zhong, W. B. Hua, C. H. Shen, S. L. Chou, and X. S. Yang, Electrochim. Acta, 2016, 188, 336-343. https://doi.org/10.1016/j.electacta.2015.12.021
  21. Q. Li, G. Li, C. Fu, D. Luo, J. Fan, and L. Li, ACS Appl. Mater. Interfaces, 2014, 6(13), 10330-10341. https://doi.org/10.1021/am5017649
  22. S. Y. Lee and Y. J. Park, ACS Omega, 2020, 5(7), 3579-3587. https://doi.org/10.1021/acsomega.9b03932
  23. B. G. Lee and Y. J. Park, Sci. Rep., 2020, 10(1), 1-11. https://doi.org/10.1038/s41598-019-56847-4
  24. X. Wang, Z. Hu, A. Adeosun, B. Liu, R. Ruan, S. Li, and H. Tan, J. Energy Inst., 2018, 91(6), 835-844. https://doi.org/10.1016/j.joei.2017.10.005
  25. J. S. Park and Y. J. Park, J. Electrochem. Sci. Technol., 2017, 8(2), 101-106. https://doi.org/10.5229/JECST.2017.8.2.101
  26. F. Xin, H. Zhou, X. Chen, M. Zuba, N. Chernova, G. Zhou, and M. S. Whittingham, ACS Appl. Mater. Interfaces, 2019, 11(38), 34889-34894. https://doi.org/10.1021/acsami.9b09696
  27. Y. Seok Jung, A. S. Cavanagh, Y. Yan, S. M. George, and A. Manthiram, J. Electrochem. Soc., 2011, 158(12), A1298-. https://doi.org/10.1149/2.030112jes
  28. Y. K. Sun, M. J. Lee, C. S. Yoon, J. Hassoun, K. Amine, and B. Scrosati, Adv. Mater., 2012, 24(9), 1192-1196. https://doi.org/10.1002/adma.201104106
  29. H. Kim, D. Byun, W. Chang, H. G. Jung, and W. Choi, Chem. A, 2017, 5(47), 25077-25089.
  30. H. J. Lee and Y. J. Park, J. Power Sources., 2013, 244, 222-233. https://doi.org/10.1016/j.jpowsour.2013.01.154
  31. J. H. Ryu, B. G. Park, S. B. Kim, and Y. J. Park, J. Appl. Electrochem., 2009, 39(7), 1059-1066. https://doi.org/10.1007/s10800-008-9757-2
  32. H. W. Kwak and Y. J. Park, Sci. Rep., 2019, 9(1), 1-9. https://doi.org/10.1038/s41598-018-37186-2
  33. H. W. Kwak and Y. J. Park, Thin Solid Films., 2018, 660, 625-630. https://doi.org/10.1016/j.tsf.2018.04.038
  34. J. W. Lee and Y. J. Park, J. Electrochem. Sci. Technol., 2018, 9(3), 176-183. https://doi.org/10.5229/JECST.2018.9.3.176
  35. A. Rougier, P. Gravereau, and C. Delmas, J. Electrochem. Soc., 1996, 143(4), 1168-1175. https://doi.org/10.1149/1.1836614
  36. C. B. Lim and Y. J. Park, Sci. Rep., 2020, 10(1), 1-12. https://doi.org/10.1038/s41598-019-56847-4
  37. C. Fu, G. Li, D. Luo, J. Zheng, and L. Li, J. Mater. Chem. A., 2014, 2(5), 1471-1483. https://doi.org/10.1039/C3TA13920D
  38. M. Okubo and A. Yamada, ACS Appl. Mater. Interfaces., 2017, 9(42), 36463-36472. https://doi.org/10.1021/acsami.7b09835
  39. K. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. pickup, Y. S. Liu, K. Edstrom, J. Guo, A. V. Chadwick, L. C. Duda, and P. G. Bruce, Nat. Chem., 2016, 8(7), 684-691. https://doi.org/10.1038/nchem.2471
  40. H. Koga, L. Croguennec, M. Menetrier, P. Mannessiez, F. Weill, C. Delmas, and S. Belin, J. Phys. Chem. C., 2014, 118(11), 5700-5709. https://doi.org/10.1021/jp412197z
  41. G. T. K. Fey, P. Muralidharan, C. Z. Lu, and Y. Da Cho, Solid State Ion., 2005, 176(37-28), 2759-2767. https://doi.org/10.1016/j.ssi.2005.09.002