DOI QR코드

DOI QR Code

Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method

  • Jin, Qiu (Faculty of Engineering and the Environment, University of Southampton) ;
  • Xin, Jianjian (Institute of Naval Architecture and Ocean Engineering, Ningbo University) ;
  • Shi, Fulong (School of Shipping and Naval Arechitecture, Chongqing Jiaotong University) ;
  • Shi, Fan (Institute of Naval Architecture and Ocean Engineering, Ningbo University)
  • Received : 2021.04.14
  • Accepted : 2021.08.31
  • Published : 2021.11.30

Abstract

This paper aims to numerically investigate violent sloshing in a partially filled three-dimensional (3D) prismatic tank with or without a baffle, further to clarify the suppressing performance of the baffle and the damping mechanism of sloshing. The numerical model is based on a Cartesian grid multiphase flow method, and it is well validated by nonlinear sloshing in a 3D rectangular tank with a vertical baffle. Then, sloshing in an unbaffled and baffled prismatic tank is parametrically studied. The effects of chamfered walls on the resonance frequency and the impact pressure are analyzed. The resonance frequencies for the baffled prismatic tank under different water depths and baffle heights are identified. Moreover, we investigated the effects of the baffle on the impact pressure and the free surface elevation. Further, the free surface elevation, pressure and vortex contours are analyzed to clarify the damping mechanism between the baffle and the fluid.

Keywords

Acknowledgement

The Project was supported by the National Science Foundation of China (NO. 51909124), the Major International (Regional) Joint Research Program of China (NO. 51720105011), Natural Science Foundation of Zhejiang Province, China (NO. LY21E090001), Zhejiang Province Public Welfare Technology Application Research Project (NO. LGF20E060001), and K.C.Wong Magna Fund in Ningbo University.

References

  1. Akyildiz, H., 2012. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank. J. Sound Vib. 331 (1), 41-52. https://doi.org/10.1016/j.jsv.2011.08.002
  2. Bai, W., Liu, X., Koh, C.G., 2015. Numerical study of violent LNG sloshing induced by realistic ship motions using level set method. Ocean Eng. 97, 100-113. https://doi.org/10.1016/j.oceaneng.2015.01.010
  3. Cao, X.Y., Ming, F.R., Zhang, A.M., 2014. Sloshing in a rectangular tank based on SPH simulation. Appl. Ocean Res. 47, 241-254. https://doi.org/10.1016/j.apor.2014.06.006
  4. Cavalagli, N., Biscarini, C., Facci, A.L., Ubertini, F., Ubertini, S., 2017. Experimental and numerical analysis of energy dissipation in a sloshing absorber. J. Fluid Struct. 68, 466-481. https://doi.org/10.1016/j.jfluidstructs.2016.11.020
  5. Chu, C.R., Wu, Y.R., Wu, T.R., 2018. Slosh-induced hydrodynamic force in a water tank with multiple baffles. Ocean Eng. 167, 282-292. https://doi.org/10.1016/j.oceaneng.2018.08.049
  6. Delorme, L., Colagrossi, A., Souto-Iglesias, A., Zamora-Rodriguez, R., Botia-Vera, E., 2009. A set of canonical problems in sloshing, Part I: pressure field in forced roll-comparison between experimental results and SPH. Ocean Eng. 36 (2), 168-178. https://doi.org/10.1016/j.oceaneng.2008.09.014
  7. Eini, N., Afshar, M.H., Gargari, S.F., Shobeyri, G., Afshar, A., 2020. A fully Lagrangian mixed discrete least squares meshfree method for simulating the free surface flow problems. Eng. Comput. 1-21.
  8. Eswaran, M., Saha, U.K., Maity, D., 2009. Effect of baffles on a partially filled cubic tank: numerical simulation and experimental validation. Comput. Struct. 87 (3), 198-205. https://doi.org/10.1016/j.compstruc.2008.10.008
  9. Faltinsen, O.M., Timokha, A.N., 2001. An adaptive multimodal approach to nonlinear sloshing in a rectangular tank. J. Fluid Mech. 432, 167-200. https://doi.org/10.1017/s0022112000003311
  10. Faltinsen, O.M., Timokha, A.N., 2002. Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. J. Fluid Mech. 470, 319-357. https://doi.org/10.1017/S0022112002002112
  11. Faltinsen, O.M., Timokha, A.N., 2009. Sloshing. Cambridge University Press, New York, USA, Cambridge.
  12. Faltinsen, O.M., Rognebakke, O.F., Timokha, A.N., 2003. Resonant three-dimensional nonlinear sloshing in a square-base basin. J. Fluid Mech. 487, 1-42. https://doi.org/10.1017/S0022112003004816
  13. Godderidge, B., Turnock, S., Earl, C., Tan, M., 2009. The effect of fluid compressibility on the simulation of sloshing impacts. Ocean Eng. 36 (8), 578-587. https://doi.org/10.1016/j.oceaneng.2009.02.004
  14. Grotle, E.L., Bihs, H., Aesoy, V., 2017. Experimental and numerical investigation of sloshing under roll excitation at shallow liquid depths. Ocean Eng. 138, 73-85. https://doi.org/10.1016/j.oceaneng.2017.04.021
  15. Hu, T., Wang, S., Zhang, G., Sun, Z., Zhou, B., 2019. Numerical simulations of sloshing flows with an elastic baffle using a sph-spim coupled method. Appl. Ocean Res. 93, 101950. https://doi.org/10.1016/j.apor.2019.101950
  16. Jiang, S.C., Teng, B., Bai, W., Gou, Y., 2015. Numerical simulation of coupling effect between ship motion and liquid sloshing under wave action. Ocean Eng. 108, 140-154. https://doi.org/10.1016/j.oceaneng.2015.07.044
  17. Jiang, M., Ren, B., Wang, G., Wang, Y.X., 2014. Laboratory investigation of the hydroelastic effect on liquid sloshing in rectangular tanks. J. Hydrodyn. 5, 751-761. https://doi.org/10.1016/S1001-6058(14)60084-6
  18. Jin, X., Lin, P., 2009. Viscous effects on liquid sloshing under external excitations. Ocean Eng. 171, 695-707. https://doi.org/10.1016/j.oceaneng.2018.10.024
  19. Jung, J.H., Yoon, H.S., Lee, C.Y., Shin, S.C., 2012. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank. Ocean Eng. 44, 79-89. https://doi.org/10.1016/j.oceaneng.2012.01.034
  20. Kang, D.H., Lee, Y.B., 2005. Summary Report of Sloshing Model Test for Rectangular Model, No. 001. Daewoo Shipbuilding & Marine Engineering Co., Ltd., South Korea.
  21. Kim, Y., Shin, Y.S., Lee, K.H., 2014. Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. Appl. Ocean Res. 26 (5), 213-226. https://doi.org/10.1016/j.apor.2005.03.004
  22. Lee, D.H., Kim, M.H., Kwon, S.H., Kim, J.W., Lee, Y.B., 2007. A parametric sensitivity study on LNG tank sloshing loads by numerical simulations. Ocean Eng. 34 (1), 3-9. https://doi.org/10.1016/j.oceaneng.2006.03.014
  23. Lee, S.H., Lee, Y.G., Jeong, K.L., 2011. Numerical simulation of three-dimensional sloshing phenomena using a finite difference method with marker-density scheme. Ocean Eng. 38 (1), 206-225. https://doi.org/10.1016/j.oceaneng.2010.10.008
  24. Liu, D., Lin, P., 2008. A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys. 227 (8), 3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006
  25. Liu, D., Lin, P., 2009. Three-dimensional liquid sloshing in a tank with baffles. Ocean Eng. 36 (2), 202-212. https://doi.org/10.1016/j.oceaneng.2008.10.004
  26. Liu, D., Tang, W., Wang, J., Xue, H., Wang, K., 2017. Modelling of liquid sloshing using clsvof method and very large eddy simulation. Ocean Eng. 129, 160-176. https://doi.org/10.1016/j.oceaneng.2016.11.027
  27. Love, J.S., Haskett, T.C., 2018. Nonlinear modelling of tuned sloshing dampers with large internal obstructions: damping and frequency effects. J. Fluid Struct. 79, 1-13. https://doi.org/10.1016/j.jfluidstructs.2018.01.012
  28. Lu, L., Jiang, S.C., Zhao, M., Tang, G.Q., 2015. Two-dimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions. Ocean Eng. 108, 662-677. https://doi.org/10.1016/j.oceaneng.2015.08.060
  29. Nave, J.C., Rosales, R.R., Seibold, B., 2010. A gradient-augmented level set method with an optimally local, coherent advection scheme. J. Comput. Phys. 229 (10), 3802-3827. https://doi.org/10.1016/j.jcp.2010.01.029
  30. Panigrahy, P.K., Saha, U.K., Maity, D., 2009. Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks. Ocean Eng. 36 (3-4), 213-222. https://doi.org/10.1016/j.oceaneng.2008.11.002
  31. Pirker, S., Aigner, A., Wimmer, G., 2012. Experimental and numerical investigation of sloshing resonance phenomena in a spring-mounted rectangular tank. Chem. Eng. Sci. 68 (1), 143-150. https://doi.org/10.1016/j.ces.2011.09.021
  32. Shi, F., Xin, J., Jin, Q., 2019. A Cartesian grid based multiphase flow model for water impact of an arbitrary complex body. Int. J. Multiphas. Flow 110, 132-147. https://doi.org/10.1016/j.ijmultiphaseflow.2018.09.008
  33. Sotiropoulos, S., Yang, X., 2014. Immersed boundary methods for simulating fluid-structure interaction. Prog. Aero. Sci. 65, 1-21. https://doi.org/10.1016/j.paerosci.2013.09.003
  34. Windt, C., Davidson, J., Chandar, D., Faedo, Nicolas, Ringwood, J., 2019. Evaluation of the overset grid method for control studies of wave energy converters in openfoam numerical wave tanks. J. Ocean Eng. Mar. Energy 6, 55-70. https://doi.org/10.1007/s40722-019-00156-5
  35. Wu, C.H., Faltinsen, O.M., Chen, B.F., 2012. Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Comput. Fluid 63, 9-26. https://doi.org/10.1016/j.compfluid.2012.02.018
  36. Xin, J., Shi, F., Jin, Q., Ma, L., 2019. Gradient-Augmented level set two-phase flow method with pretreated reinitialization for three-dimensional violent sloshing. J. Fluid Eng. 142 (1).
  37. Xin, J.J., Chen, Z.L., Shi, F., Shi, F.L., Jin, Q., 2020. Numerical simulation of nonlinear sloshing in a prismatic tank by a Cartesian grid based three-dimensional multiphase flow model. Ocean Eng. 213, 107629. https://doi.org/10.1016/j.oceaneng.2020.107629
  38. Xue, M.A., Zheng, J., Lin, P., 2012. Numerical simulation of sloshing phenomena in cubic tank with multiple baffles. J. Appl. Math. 1-21, 2012.
  39. Yang, J.M., 2016. Sharp interface direct forcing immersed boundary methods: a summary of some algorithms and applications. J. Hydrody. Ser B 28 (5), 713-730. https://doi.org/10.1016/S1001-6058(16)60675-3
  40. Yu, Y., Ma, N., Fan, S.M., Gu, X.C., 2017. Experimental and numerical studies on sloshing in a membrane-type LNG tank with two floating plates. Ocean Eng. 129, 217-227. https://doi.org/10.1016/j.oceaneng.2016.11.029
  41. Zhao, Y., Chen, H.C., 2015. Numerical simulation of 3D sloshing flow in partially filled LNG tank using a coupled level-set and volume-of-fluid method. Ocean Eng. 104, 10-30. https://doi.org/10.1016/j.oceaneng.2015.04.083
  42. Zhao, D., Hu, Z., Chen, G., Lim, S., Wang, S., 2017. Nonlinear sloshing in rectangular tanks under forced excitation. Int. J. Nav. Arch. Ocean Eng. 10 (5), 545-565. https://doi.org/10.1016/j.ijnaoe.2017.10.005