ON WEAKLY QUASI \boldsymbol{n}-ABSORBING SUBMODULES

Mohammed Issoual, Najib Mahdou, and Moutu Abdou Salam Moutui

Abstract

Let R be a commutative ring with $1 \neq 0, n$ be a positive integer and M be an R-module. In this paper, we introduce the concept of weakly quasi n-absorbing submodule which is a proper generalization of quasi n-absorbing submodule. We define a proper submodule N of M to be a weakly quasi n-absorbing submodule if whenever $a \in R$ and $x \in M$ with $0 \neq a^{n} x \in N$, then $a^{n} \in\left(N:_{R} M\right)$ or $a^{n-1} x \in N$. We study the basic properties of this notion and establish several characterizations.

1. Introduction

Throughout the whole paper, all rings are assumed to be commutative with $1 \neq 0$, all modules are considered to be unitary and n is a positive integer. Let R be a ring with $1 \neq 0, M$ be an R-module and N be a proper submodule of M. In [9], the authors introduced and investigated the concept of 2-absorbing (resp., weakly 2 -absorbing) submodules. They defined a submodule N to be a 2 absorbing submodule (resp., weakly 2 -absorbing submodule) of M if whenever $a, b \in R$ and $m \in M$ with $a b m \in N$ (resp., $0 \neq a b m \in N)$, then $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. A more general concept than 2 -absorbing submodule is the concept n-absorbing submodule. From [10], a proper submodule N of M is said to be an n-absorbing (resp., strongly n-absorbing) submodule of M if whenever $a_{1} \cdots a_{n} m \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $m \in M$ (resp., $I_{1} \cdots I_{n} L \subset N$ for ideals I_{1}, \ldots, I_{n} of R and a submodule L of M), then either $a_{1} \cdots a_{n} \in$ $\left(N:_{R} M\right)$ (resp., $\left.I_{1} \cdots I_{n} \subset\left(N:_{R} M\right)\right)$ or there are $n-1$ of a_{i} 's (resp., I_{i} 's) whose product with m (resp., L) is in N. Recall that a proper submodule N of M is called semiprime if whenever $r \in R$ and $m \in M$ with $r^{2} m \in N$, then $r m \in N$. For more details about the concept of n -absorbing and related notions, we refer the reader to $[3,4,6,7,13]$.

In this paper, we introduce the concept of weakly quasi n-absorbing submodule which is a proper generalization of quasi n-absorbing submodule. We define a proper submodule N of M to be a weakly quasi n-absorbing submodule if whenever $a \in R$ and $x \in M$ with $0 \neq a^{n} x \in N$, then $a^{n} \in\left(N:_{R} M\right)$ or

[^0]$a^{n-1} x \in N$. We study the basic properties of this notion and establish several characterizations.

We denote by \sqrt{I}, the radical of an ideal I of R. Let N be a submodule of an R-module M. We denote by $\left(N:_{R} M\right)$, the residual of N by M, that is, the set of all $r \in R$ such that $r M \subseteq N$. For $x \in M$, we denote by $\operatorname{ann}(x)$, the annihilator of x, that is, the set of all $r \in R$ such that $r x=0$.

2. Results

It is worthwhile recalling that a proper submodule N of an R-module M is a quasi n-absorbing submodule for some positive integer $n \geq 1$, if $a^{n} x \in N$ for some $a \in R$ and $x \in M$ with $a^{n} x \in N$, then either $a^{n-1} x \in N$ or $a^{n} \in$ $\left(N:_{R} M\right)$. Now, we recall the concept of weakly quasi n-absorbing submodule defined in the introduction.

Definition. A proper submodule N of an R-module M is called a weakly quasi n-absorbing submodule of M if $0 \neq a^{n} x \in N$ for some $a \in R$ and $x \in M$, then $a^{n} \in\left(N:_{R} M\right)$ or $a^{n-1} x \in N$.

Notice that from the previous definition, every quasi n-absorbing submodule is clearly a weakly quasi n-absorbing submodule. However, a weakly quasi n absorbing submodule need not be a quasi n-absorbing submodule, as illustrated in the next example.

Example 2.1. Let $M:=\mathbb{Z} / 12 \mathbb{Z}$ as \mathbb{Z}-module and $N=\{0\}$. Clearly, N is a weakly quasi 2 -absorbing submodule of M. However, N is not a quasi 2absorbing submodule of M since $\left(N:_{\mathbb{Z}} M\right)=12 \mathbb{Z}$ and $2^{2} \cdot 3 \in N$ and neither $2^{2} \in(N: \mathbb{Z} M)$ nor $2 \cdots 3 \in N$.

Now, we introduce the following definition which will be useful for studying the weakly quasi n-absorbing submodules.

Definition. Let R be a ring, M be an R-module and N be a weakly quasi n-absorbing submodule of M. An element $a \in R$ is called an unbreakable element of N if there exists an element $x \in M$ such that $a^{n} x=0$ and neither $a^{n} \in\left(N:_{R} M\right)$ nor $a^{n-1} x \in N$.

It is worthwhile mentioning that if N is a weakly quasi n-absorbing submodule of M and there is no unbreakable element, then N is a quasi n-absorbing submodule of M. The next lemma gives some basic facts about unbreakable elements.

Lemma 2.2. Let R be a ring, M be an R-module and N be a proper weakly quasi n-absorbing submodule of M. If $a \in R$ is an unbreakable element of N. Then the following statements hold:
(1) $a^{n} N=0$.
(2) $a+s$ is an unbreakable element of N for every $s \in\left(N:_{R} M\right)$.

Proof. (1) Let a be an unbreakable element of N. Then there exists $x \in M$ with $a^{n} x=0$ but neither $a^{n} \in\left(N:_{R} M\right)$ nor $a^{n-1} x \in N$. Assume by the way of contradiction that $0 \neq a^{n} N$, then $0 \neq a^{n} y \in N$ for some $y \in N$. Since N is a weakly quasi n-absorbing submodule of M and $a^{n} \notin\left(N:_{R} M\right)$, then $a^{n-1} y \in N$. On the other hand, $0 \neq a^{n}(x+y)=a^{n} y \in N$ and $a^{n} \notin\left(N:_{R} M\right)$ implies that $a^{n-1}(x+y) \in N$. Thus $a^{n-1} x \in N$, which is a contradiction. Hence, $a^{n} N=0$.
(2) Since a is an unbreakable element of N, then there exists $x \in M$ with $a^{n} x=0$ and neither $a^{n} \in\left(N:_{R} M\right)$ nor $a^{n-1} x \in N$. Now let $s \in\left(N:_{R} M\right)$. Assume that $0 \neq(a+s)^{n} x$. We have:

$$
(a+s)^{n} x=\sum_{j=0}^{m-1}\binom{n}{j} a^{j} s^{n-j} x \in N
$$

The fact that N is a weakly quasi n-absorbing submodule of M, gives either $(a+s)^{n-1} x \in N$ or $(a+s)^{n} \in\left(N:_{R} M\right)$. Two cases are then possible:

Case 1: $(a+s)^{n-1} x \in N$. Then one can easily check that $a^{n-1} x \in N$ since for all $j=1, \ldots, n-1, a^{j} s^{n-1-j} x \in N$, the desired contradiction.

Case 2: $(a+s)^{n} \in\left(N:_{R} M\right)$. Since $a^{j} s^{n-j} \in\left(N:_{R} M\right)$, then $a^{n} \in\left(N:_{R}\right.$ $M)$. Hence, $(a+s)^{n} x=0$ and neither $(a+s)^{n-1} x \in N$ nor $(a+s)^{n} \in\left(N:_{R} M\right)$. Thus, it follows that $a+s$ is an unbreakable element of N.

Finally, $a+s$ is an unbreakable element of N, as desired.
Theorem 2.3. Let R be a ring, M be an R-module and N be a proper weakly quasi n-absorbing submodule which is not quasi n-absorbing submodule of M. Then $\left(N:_{R} M\right) \subseteq \sqrt{\operatorname{ann}(N)}$.
Proof. Since N is a weakly quasi n-absorbing submodule which is not quasi n-absorbing submodule of M, then there exists an unbreakable element b of N. By Lemma 2.2(2), for every $a \in\left(N:_{R} M\right)$, we have $(b+a)^{n} N=0$. So, $a+b \in \sqrt{\operatorname{ann}(N)}$. By Lemma $2.2(1), b \in \sqrt{\operatorname{ann}(N)}$ and so $a \in \sqrt{\operatorname{ann}(N)}$. Hence, $\left(N:_{R} M\right) \subseteq \sqrt{\operatorname{ann}(N)}$, as desired.

Let R be a ring and M be an R-module. Recall that M is called a multiplication module if for each submodule N of $M, N=I M$ for some ideal I of R. In this case, we can take $I=\left(N:_{R} M\right)$ [11]. Also, recall that for a submodule N of M, if $N=I M$ for some ideal I of R, then I is called a presentation ideal of N. Clearly, every submodule of M has a presentation ideal if and only if M is a multiplication module. Let N and K be submodules of a multiplication R-module M with $N=I_{1} M$ and $K=I_{2} M$ for some ideals I_{1} and I_{2} of R, the product N and K denoted by $N K$ is defined by $N K=I_{1} I_{2} M$. From [1, Theorem 3.4], the product of N and K is independent of presentation of N and K. Moreover, for $a, b \in M$, by $a b$, we mean the product of $R a$ and $R b$. Clearly, $N K$ is a submodule and $N K \subseteq N \cap K$ [1]. A submodule N of an R module M is called nilpotent if $\left(N:_{R} \bar{M}\right)^{k} N=0$ for some positive integer k [2]. The next corollary is a consequence of Theorem 2.3.

Corollary 2.4. Let R be a Noetherian ring and M be an R-module. If N is a proper weakly quasi n-absorbing submodule which is not quasi n-absorbing submodule of M. Then:
(1) N is nilpotent.
(2) If M is a faithful multiplication module, then $N^{p}=0$ for some positive integer p.
Proof. (1) By Theorem 2.3, we have $\left(N:_{R} M\right) \subseteq \sqrt{\operatorname{ann}(N)}$. Since R is Noetherian, then there exists a positive integer $k \geq 1$ such that $\left(N:_{R} M\right)^{k} \subseteq$ $\operatorname{ann}(N)$. So, $\left(N:_{R} M\right)^{k} N=0$. Hence, N is a nilpotent submodule of M.
(2) By assertion (1) above, we have ($\left.N:_{R} M\right)^{k} N=0$ for some positive integer $k \geq 1$. It follows that $\left(N:_{R} M\right)^{k+1} \subseteq\left(\left(N:_{R} M\right)^{k} N:_{R} M\right)=\left(0:_{R}\right.$ $M)=0$, as M is faithful. Therefore, $\left(N:_{R} M\right)^{k+1}=0$. Thus, $N^{k+1}=0$.

Let N be a proper submodule of a nonzero R-module M. Then the M-radical of N, denoted here by $M-\sqrt{N}$ is defined in [12] to be the intersection of all prime submodules of M containing N. It is shown in [11, Theorem 2.12] that if N is a proper submodule of M, then $M-\sqrt{N}=M-\sqrt{\left(N:_{R} M\right)} M$. The next corollary is an application of Theorem 2.3.

Corollary 2.5. Let R be a ring, M be a multiplication R-module and N be a proper faithful weakly quasi n-absorbing submodule which is not quasi n absorbing submodule of M. Then $N \subseteq M-\sqrt{0}$.

Proof. Since M is a multiplication module, then $N=\left(N:_{R} M\right) M$. So, by Theorem 2.3, it follows that $N=\left(N:_{R} M\right) M \subseteq \sqrt{0} M=M-\sqrt{0}$, as N is faithful.

Recall that a ring is called von Neumann regular if, for every $x \in R$ there exists $y \in R$ such that $x^{2} y=x$. It is well known that a commutative ring is von Neumann regular if and only if every proper ideal is radical. The next corollary is another consequence of Theorem 2.3.

Corollary 2.6. Let R be a von Neumann regular ring, M be an R-module and N be a proper weakly quasi n-absorbing submodule which is not quasi n absorbing submodule of M. Then $\left(N:_{R} M\right) N=0$.

Proof. Assume that R is a von Neumann regular ring. Since N is a weakly quasi n-absorbing submodule which is not quasi n-absorbing submodule of M, then by Theorem 2.3, $\left(N:_{R} M\right) \subseteq \sqrt{\operatorname{ann}(N)}$. Using the fact that R is a von Neumann regular ring, then $\sqrt{\operatorname{ann}(N)}=\operatorname{ann}(N)$. Thus, it follows that $\left(N:_{R} M\right) N=0$.

The next corollary is another application of Corollary 2.6.
Corollary 2.7. Let R be a von Neumann regular ring, M be a faithful R module and N be a proper weakly quasi n-absorbing submodule which is not quasi n-absorbing submodule of M. Then $\left(N:_{R} M\right)^{2}=0$.

Proof. By Corollary 2.6, we have $\left(N:_{R} M\right) N=0$. So, $\left(N:_{R} M\right)^{2} \subseteq\left(\left(N:_{R}\right.\right.$ $\left.M) N:_{R} M\right)=\left(0:_{R} M\right)=\operatorname{ann}(M)=0$ as M is faithful and so $\left(N:_{R} M\right)^{2}=0$, as desired.

In the following theorem, we establish that for a ring R in which 2 is unit of R and M be an R-module, we have $\left(N:_{R} M\right)^{2} N=0$ for every weakly quasi 2-absorbing submodule N which is not quasi 2-absorbing submodule of M.

Theorem 2.8. Let R be a ring with 2 is unit in R and M be an R-module. If N is a weakly quasi 2-absorbing submodule which not a quasi 2-absorbing submodule, then $\left(N:_{R} M\right)^{2} N=0$.

Proof. By Lemma 2.2, for every $s \in\left(N:_{R} M\right),(a+s)^{2} N=(a-s)^{2} N=0$ where a is an unbreakable element of N. Thus $2\left(a^{2}+s^{2}\right) N=2 s^{2} N=0$. Since 2 is unit, then $s^{2} N=0$ for every $s \in\left(N:_{R} M\right)$. Now let $s, t \in\left(N:_{R} M\right)$, we have $2 s t N=\left((s+t)^{2}-s^{2}-t^{2}\right) N=0$, so $s t N=0$ as 2 is unit. We conclude that $\left(N:_{R} M\right)^{2} N=0$.

Let M be an R-module and N be a proper submodule of M. We say that N is a weakly strongly quasi n-absorbing submodule of M if whenever $0 \neq$ $I^{n} L \subseteq N$ for some proper ideal I of R and a proper submodule of M, then either $I^{n} \subseteq\left(N:_{R} M\right)$ or $I^{n-1} L \subseteq N$. It is clear that a weakly strongly quasi n-absorbing submodule is a weakly quasi n-absorbing submodule. In the next theorem, we show that the notions weakly strongly quasi n-absorbing submodule and weakly quasi n-absorbing submodule collapse in the case the ring R is a principal domain.

Theorem 2.9. Let R be a principal domain and N be a proper submodule of an R-module M. Then the following assertions are equivalent:
(1) N is a weakly quasi n-absorbing submodule of M.
(2) N is a weakly strongly quasi n-absorbing submodule of M.

Proof. (1) \Rightarrow (2) Let $0 \neq I^{n} L \subseteq N$ for some proper ideal I of R and a proper submodule L of M. Since R is a principal domain, then there exists an element $a \in R$ such that $I=R a$. So, $0 \neq a^{n} L \subseteq N$. Assume that $a^{n} \notin\left(N:_{R} M\right)$. we claim that $a^{n-1} L \subseteq N$. Indeed, let $x \in L$. If $0 \neq a^{n} x$, then $a^{n-1} x \in N$ since N is a weakly quasi n-absorbing submodule and $a^{n} \notin\left(N:_{R} M\right)$. Now assume that $a^{n} x=0$. Since $a^{n} L \neq 0$, then $0 \neq a^{n} y=a^{n}(x+y) \in N$ for some $y \in N$. Consequently, $a^{n-1}(x+y) \in N$ and so $a^{n-1} x \in N$ as $a^{n-1} y \in N$ which is a weakly quasi n-absorbing submodule. Therefore, $a^{n-1} L \subseteq N$. Hence, $I^{n-1} L \subseteq N$.
$(2) \Rightarrow(1)$ Straightforward.
Proposition 2.10. Let N be a proper submodule of M. Then the following statements are equivalent:
(1) If $0 \neq I^{n} L \subseteq N$ for some ideal I of R and submodule L of M, then either $I^{n} \subseteq\left(N:_{R} M\right)$ or $I^{n-1} L \subseteq N$.
(2) If $0 \neq I^{n} x \subseteq N$ for some ideal I of R and $x \in M$, then $I^{n} \subseteq\left(N:_{R} M\right)$ or $I^{n-1} x \subseteq N$.
Proof. (1) \Rightarrow (2) Straightforward.
(2) \Rightarrow (1) Suppose that $0 \neq I^{n} L \subseteq N$ for some ideal I of R and submodule L of M. Assume that $I^{n} \nsubseteq\left(N:_{R} M\right)$ and we show that $I^{n-1} L \subseteq N$. By the way of contradiction, suppose $I^{n-1} L \nsubseteq N$. Then there exists an element x of L with $I^{n-1} x \nsubseteq N$. Two cases are then possible:

Case 1: If $0 \neq I^{n} x \subseteq N$. Since $I^{n} \nsubseteq\left(N:_{R} M\right)$, from assumption it follows that $I^{n-1} x \subseteq N$, which is a contradiction.

Case 2: If $I^{n} x=0$. The fact that $0 \neq I^{n} L \subseteq N$, there exists an element y of L with $0 \neq I^{n} y \subseteq N$. Now $0 \neq I^{n}(x+y)=I^{n} y \subseteq N$. Since $I^{n} \nsubseteq\left(N:_{R} M\right)$, then it follows that $I^{n-1} y \subseteq N$ and $I^{n-1}(x+y) \subseteq N$. Hence, $I^{n-1} x \subseteq N$, which is a contradiction again.

Finally, $I^{n-1} L \subseteq N$.
In the next proposition, we study the stability of homomorphic image of a weakly quasi n-absorbing submodule.
Proposition 2.11. Let N, L be submodules of an R-module M with $L \subseteq N$. If N is a weakly quasi n-absorbing submodule of M, then N / L is a weakly quasi n-absorbing submodule of M / L. The converse holds if L is a weakly quasi n-absorbing submodule of M.

Proof. Assume that N is a weakly quasi n-absorbing submodule of M. Let $a \in R$ and $x+L \in M / L$ with $0_{M / L} \neq a^{n}(x+L) \in N / L$. If $a^{n} \in\left(N:_{R}\right.$ $M)$, then we are done. We may assume that $a^{n} \notin\left(N:_{R} M\right)$. The fact that $0_{M / L} \neq a^{n}(x+L)$ implies that $a^{n} x \in N$ and $a^{n} x \notin L$. So, $0 \neq a^{n} x \in N$. Since N is a weakly quasi n-absorbing submodule of M and $a^{n} \notin\left(N:_{R} M\right)$, then $a^{n-1} x \in N$. Therefore, $a^{n-1}(x+L) \in N / L$ and so N / L is a weakly quasi n-absorbing submodule of M / N. Conversely, assume that L is a weakly quasi n absorbing submodule of M and N / L is a weakly quasi n-absorbing submodule of M / L. Let $a \in R$ and $x \in M$ with $0 \neq a^{n} x \in N$. Then $a^{n}(x+L) \in N / L$. If $a^{n}(x+L)=0_{M / L}$, then $0 \neq a^{n} x \in L$. Using the fact that L is a weakly quasi n-absorbing submodule of M, then either $a^{n-1} x \in L \subseteq N$ or $a^{n} \in\left(L:_{R}\right.$ $M) \subseteq\left(N:_{R} M\right)$. If $a^{n}(x+L) \neq 0_{M / L}$. Then either $a^{n} \in\left(N / L:_{R} M / L\right)$ or $a^{n-1}(x+L) \in N / L$. Hence, $a^{n} \in\left(N:_{R} M\right)$ or $a^{n-1} x \in N$. Finally, N is a weakly quasi n-absorbing submodule of M, as desired.

Recall that from [8, Definition 2.20(2)], a submodule N of an R-module M is said to be a strongly (m, n)-closed submodule if whenever I is an ideal and L is a submodule of M with $I^{m} L \subseteq N$ implies that $I^{n} \subseteq\left(N:_{R} M\right)$ or $I^{n-1} L \subseteq N$.
Theorem 2.12. Let N be a proper submodule of an R-module M. Then the following statements are equivalent:
(1) If $0 \neq I^{n} K \subseteq N$ for some ideal I of R and submodule K of M, then either $I^{n} \subseteq\left(N:_{R} M\right)$ or $I^{n-1} K \subseteq N$.
(2) For any ideal I of R and $N \subseteq L$ a submodule of M with $0 \neq I^{m} L \subseteq N$ implies $I^{n} \subseteq\left(N:_{R} M\right)$ or $I^{n-1} L \subseteq N$.
Proof. (1) \Rightarrow (2) Straightforward.
$(2) \Rightarrow(1)$ Let I be an ideal of R and K be a submodule of M with $0 \neq$ $I^{m} K \subseteq N$. Then $0 \neq I^{m}(K+N) \subseteq N$. Since N is a strongly (m, n)-closed submodule of M and $L:=K+N \supseteq N$, then $I^{n} \subseteq\left(N:_{R} M\right)$ or $I^{n-1} L=$ $I^{n-1}(K+N) \subseteq N$ from the hypothesis (2). Thus $I^{n} \subseteq\left(N:_{R} M\right)$ or $I^{n-1} K \subseteq$ N.

In the next theorem we show the relationship between a weakly quasi n absorbing submodule N and the ideal ($N:_{R} x$) of R, where $x \in M \backslash N$. Recall from [5] that an ideal I of a ring R is a weakly semi n-absorbing ideal of R if $0 \neq x^{n+1} \in I$ implies $x^{n} \in I$.

Theorem 2.13. Let M be an R-module and N be a proper submodule of M.
(1) If $\left(N:_{R} x\right)$ is a weakly semin-absorbing ideal of R for every $x \in M \backslash N$, then N is a weakly quasi n-absorbing submodule of M.
(2) Assume that N is a weakly quasi n-absorbing submodule of M. Let x be an element of $M \backslash N$ such that ann (x) is a quasi n-absorbing ideal of R. Then $\left(N:_{R} x\right)$ is a weakly quasi n-absorbing ideal of R for each $x \in M \backslash N$.
Proof. (1) Let $0 \neq a^{n} y \in N$ for some $a \in R$ and $y \in M$. If $y \in N$, then we are done. We may assume $y \in M \backslash N$. If $a^{n} \in\left(N:_{R} M\right)$, then we are done. So, we may assume $a^{n} \notin\left(N:_{R} M\right)$ and so $0 \neq a^{n}$. Since $a^{n} \in\left(N:_{R} y\right)$ which is a weakly semi n-absorbing ideal of R, then $a^{n-1} \in\left(N:_{R} y\right)$ and so $a^{n-1} y \in N$. Hence, N is a weakly quasi n-absorbing submodule of M.
(2) Let $x \in M \backslash N$. Suppose that $0 \neq a^{n} y \in\left(N:_{R} x\right)$ and $a^{n} \notin\left(N:_{R} x\right)$ for some $a \in R$ and $y \in M$. If $0 \neq a^{n} y x \in N$. Since N is a weakly quasi n-absorbing submodule of M and $a^{n} \notin\left(N:_{R} M\right)$, then $a^{n-1} y x \in N$. Hence, $a^{n-1} y \in\left(N:_{R} x\right)$. Now, suppose that $a^{n} y x=0$. From assumption, it follows that $a^{n-1} y \in \operatorname{ann}(x)$, which implies that $a^{n-1} y \in\left(N:_{R} x\right)$. Consequently, $\left(N:_{R} x\right)$ is a weakly quasi n-absorbing ideal of R, as desired.

Theorem 2.14. Let M be a faithful R-module and N be a proper submodule of M. If N is a weakly quasi n-absorbing submodule of R, then $\left(N:_{R} M\right)$ is a weakly quasi n-absorbing ideal of R. The converse holds if M is a cyclic faithful R-module.

The proof of the previous theorem requires the following lemma.
Lemma 2.15. Let N be a proper submodule of an R-module M. Then the following statements are equivalent:
(1) N is a weakly quasi n-absorbing submodule of M.
(2) For every $a \in R$ and L a submodule of M with $0 \neq a^{n} L \subset N$, then $a^{n-1} L \subset N$ or $a^{n} \in\left(N:_{R} M\right)$.

Proof. (1) \Rightarrow (2) Assume that N is a weakly quasi n-absobing submodule of M. Let $a \in R$ and L be a submodule of M such that $0 \neq a^{n} L \subset N$ and $a^{n} \notin\left(N:_{R} M\right)$. Let $x \in L$. If $0 \neq a^{n} x$, then $a^{n-1} x \in N$ (as N is a weakly quasi n-absorbing submodule of R). We may assume that $a^{n} x=0$. The fact that $0 \neq a^{n} L \subset N$ gives $0 \neq a^{n} y \in N$ for some $y \in L$. Since $a^{n} \notin\left(N:_{R} M\right)$, it follows that $a^{n-1} y \in N$. Set $z=y+x \in L$. So, $a^{n} z \neq 0$ and with similar argument as above, we get $a^{n-1} z \in L$. Therefore, $a^{n-1} x \in N$. Hence, for every $x \in L, a^{n-1} x \in N$. Finally, $a^{n-1} L \subset N$.
$(2) \Rightarrow$ (1) Assume that for every $a \in R$ and L a submodule of M with $0 \neq a^{n} L \subset N$, then $a^{n-1} L \subset N$ or $a^{n} \in\left(N:_{R} M\right)$. Let $0 \neq a^{n} x \in N$ for some $a \in R$ and $x \in M$. Set $L=R x$. Then $0 \neq a^{n} L \subset N$. From assumption, we get $a^{n} \in\left(N:_{R} M\right)$ or $a^{n-1} L \subset N$ and so $a^{n-1} x \in N$ or $a^{n} \in\left(N:_{R} M\right)$. Hence, N is weakly quasi n-absorbing submodule of M, as desired.

Proof of Theorem 2.14. Let $0 \neq a^{n} b \in\left(N:_{R} M\right)$ for some $a, b \in R$. Since M is a faithful R-module, then $0 \neq a^{n} b M=a^{n}(b M) \subset N$. By Lemma 2.15, $a^{n-1}(b M)=a^{n-1} b M \subset N$ or $a^{n} \in\left(N:_{R} M\right)$. Hence, $\left(N:_{R} M\right)$ is a weakly quasi n-absorbing ideal of R. Conversely, assume that $\left(N:_{R} M\right)$ is a weakly quasi n-absorbing ideal of R and $M=R m$ is a cyclic faithful R-module. Let $a \in R$ and $x \in M$ such that $0 \neq a^{n} x \in N$. Then there exists $b \in R$ such that $x=b m$. So, $0 \neq a^{n} b m \in N$. Therefore, $0 \neq a^{n} b \in\left(N:_{R} m\right)=\left(N:_{R} M\right)$. The fact that $\left(N:_{R} M\right)$ is a weakly quasi n-absorbing ideal of R, gives either $a^{n} \in\left(N:_{R} M\right)$ or $a^{n-1} b \in\left(N:_{R} M\right)$. Hence, $a^{n} \in\left(N:_{R} M\right)$ or $a^{n-1} b m=$ $a^{n-1} x \in N$, making N, a weakly quasi n-absorbing submodule of M.

It is worth to mention that in Theorem 2.14 the condition " M is a faithful R module" is necessary. Otherwise, if N is a weakly quasi n-absorbing submodule of M, then $\left(N:_{R} M\right)$ need not be a weakly quasi n-absorbing ideal of R, as shown in the next example.

Example 2.16. Consider the \mathbb{Z}-module $M:=\mathbb{Z} / 16 \mathbb{Z}$ and $N=\{0\}$. Observe that $\operatorname{ann}(M)=16 \mathbb{Z}$. So, M is not faithful. On the other hand, N is a weakly quasi 2-absorbing submodule and $\left(N:_{\mathbb{Z}} M\right)=16 \mathbb{Z}$ is not a weakly quasi 2absorbing ideal of \mathbb{Z} since $2^{2} .4 \in(N: \mathbb{Z} M)$ but neither $2.4=8 \in(N: \mathbb{Z} M)=$ $16 \mathbb{Z}$ nor $2^{2} \in(N: \mathbb{Z} M)$.

Let R be a ring. It is well known that a proper submodule N of an R module M is said to be a weakly semiprime submodule of M if $0 \neq r^{2} x \in N$ for some $r \in R$ and $x \in M$, then $r x \in N$. In the next theorem, we show that the class of weakly semiprime submodules is contained in the class of weakly quasi n-absorbing submodules for every positive integer $n \geq 2$.

Theorem 2.17. Let R be a ring, M be an R-module and N be a proper submodule of M. If N is a weakly semiprime submodule of M, then N is a weakly quasi n-absorbing submodule of M for every positive integer $n \geq 2$.

Proof. Let $0 \neq a^{n} x \in N$ for some $a \in R, x \in M$ and for some positive integer $n \geq 2$. Then $0 \neq a^{2}\left(a^{n-2} x\right) \in N$. Since N is a weakly semiprime submodule of M, we get $0 \neq a^{n-1} x \in N$. Hence, N is a weakly quasi n-absorbing submodule of M, as desired.

The following theorem shows that the intersection of a family of weakly semiprime submodules is a weakly quasi- n absorbing submodule.

Theorem 2.18. Let R be a ring, M be an R-module. Let $\left(N_{i}\right)_{i \in I}$ be a family of weakly semiprime submodules of M. Then $\bigcap_{i \in I} N_{i}$ is a weakly quasi n-absorbing submodule of M for all positive integer $n \geq 2$.

Proof. Suppose that $0 \neq a^{n} x \in N:=\bigcap_{i \in I} N_{i}$ for some $a \in R$ and $x \in M$. Then $0 \neq a^{n} x \in N_{i}$ for all $i \in I$. Since N_{i} is a weakly semiprime module, then $a x \in N_{i}$ for all $i \in I$. Therefore, $a^{n-1} x=a^{n-2}(a x) \in N_{i}$ for all $i \in I$ and so $a^{n-1} x \in N$. Hence, $\bigcap_{i \in I} N_{i}$ is a weakly quasi n-absorbing submodule of M for all positive integer $n \geq 2$.

Theorem 2.19. Let M_{1}, M_{2} be R-modules with $M=M_{1} \oplus M_{2}$, n be a positive integer and $N_{1}\left(\right.$ resp., $\left.N_{2}\right)$ be a proper submodule of $M_{1}\left(\right.$ resp., $\left.M_{2}\right)$. Then the following statements are equivalent:
(1) $N_{1} \oplus M_{2}$ (resp., $M_{1} \oplus N_{2}$) is a weakly quasi n-absorbing submodule of M which is not a quasi n-absorbing submodule.
(2) If N_{1} (resp., N_{2}) is a weakly quasi n-absorbing submodule of M_{1} (resp., M_{2}) which is not a quasi n-absorbing submodule of $M_{1}\left(\right.$ resp., $\left.M_{2}\right)$ and $a^{n} M_{2}=0\left(\right.$ resp., $\left.a^{n} M_{1}=0\right)$ for every unbreakable element a of N_{1} (resp., N_{2}).

The proof of the previous theorem needs the following lemma.
Lemma 2.20. Let M_{1}, M_{2} be R-modules with $M=M_{1} \oplus M_{2}$, n be a positive integer and N_{1} (resp., N_{2}) be proper weakly quasi n-absorbing submodule of M_{1} (resp., M_{2}). Let $a \in R$. Then the following statements are equivalent:
(1) a is an unbreakable element of N_{1} (resp., N_{2}).
(2) a is an unbreakable element of $N_{1} \oplus M_{2}\left(\right.$ resp., $\left.M_{1} \oplus N_{2}\right)$.

Proof. Assume that a is an unbreakable element of N_{1}. Then there exists $x \in M_{1}$ with $a^{n} x=0$ and neither $a^{n} \in\left(N_{1}:_{R} M_{1}\right)$ nor $a^{n-1} x \in N_{1}$. Then $a^{n}(x, 0)=(0,0)$ and neither $a^{n} \in\left(N_{1} \oplus M_{2}:_{R} M_{1} \oplus M_{2}\right)$ nor $a^{n-1}(x, 0) \in$ $N_{1} \oplus M_{2}$. Hence, a is an unbreakable element of $N_{1} \oplus M_{2}$. Conversely, assume that $a \in R$ is an unbreakable element of $N_{1} \oplus M_{2}$. So there exists $(x, y) \in$ $M_{1} \oplus M_{2}$ with $a^{n}(x, y)=(0,0)$ and neither $a^{n} \in\left(N_{1} \oplus M_{2}:_{R} M_{1} \oplus M_{2}\right)$ nor $a^{n-1}(x, y) \in N_{1} \oplus M_{2}$. Hence, $a^{n} x=0$ for $x \in M_{1}$ and neither $a^{n} \in\left(N_{1}:_{R} M_{1}\right)$ nor $a^{n-1} x \in N_{1}$. Thus, a is an unbreakable element of N_{1}.

With similar proof as above, one can easily show that a is an unbreakable element of N_{2} if and only if a is an unbreakable element of $M_{1} \oplus N_{2}$.

Proof of Theorem 2.19. (1) \Rightarrow (2) Assume that $N_{1} \oplus M_{2}$ is a weakly quasi n absorbing submodule of M which is not a quasi n-absorbing submodule. Then by Proposition 2.11, $N_{1} \simeq \frac{N_{1} \oplus M_{2}}{0 \oplus M_{2}}$ is a weakly n-absorbing submodule of M_{1}. Now, by Lemma 2.20, it follows that N_{1} is not a quasi n-absorbing submodule of M_{1} since N_{1} admits an element which is unbreakable $a \in R$, as a is an unbreakable element of $N_{1} \oplus M_{2}$. It remains to show that if a is an unbreakable element of N_{1}, then $a^{n} M_{2}=0$. Assume by the way of contradiction that a is an unbreakable element of N_{1} and $a^{n} M_{2} \neq 0$. Then $a^{n} y \neq 0$ for some $y \in M_{2}$. Since a is an unbreakable element of N_{1}, then there exists $x \in M_{1}$ with $a^{n} x=0$ and neither $a^{n} \in\left(N_{1}:_{R} M_{1}\right)$ nor $a^{n-1} x \in N_{1}$. Since $0 \neq a^{n}(x, y) \in N_{1} \oplus M_{2}$, then the fact that $N_{1} \oplus M_{2}$ is a weakly quasi n-absorbing submodule of $M_{1} \oplus M_{2}$ and $a^{n} \notin\left(N_{1} \oplus M_{2}: M_{1} \oplus M_{2}\right)$ give that $a^{n-1} x \in N_{1}$, which is a contradiction. Hence, $a^{n} M_{2}=0$.
$(2) \Rightarrow(1)$ Assume that N_{1} is a weakly quasi n-absorbing which is not quasi n-absorbing submodule of M_{1} and $a^{n} M_{2}=0$ for every unbreakable a element of N_{1}. Let $b \in R$ and $(x, y) \in M_{1} \oplus M_{2}$ with $0 \neq b^{n}(x, y) \in N_{1} \oplus M_{2}$. If $0 \neq b^{n} x \in N_{1}$, then either $b^{n} \in\left(N_{1} \oplus M_{2}:_{R} M\right)$ or $b^{n-1}(x, y) \in N_{1} \oplus M_{2}$. Now, suppose that $b^{n}=0$ and neither $b^{n} \in\left(N_{1}:_{R} M_{1}\right)$ nor $b^{n-1} \in N_{1}$, then b is an unbreakable element of N_{1}. From assumption, we have $b^{n} M_{2}=0$, and so $b^{n}(x, y)=0$, which is a contradiction. Therefore, either $b^{n} \in\left(N_{1} \oplus M_{2}:_{R}\right.$ $\left.M_{1} \oplus M_{2}\right)$ or $b^{n-1}(x, y) \in N_{1} \oplus M_{2}$. Finally, we conclude that $N_{1} \oplus M_{2}$ is a weakly quasi n-absorbing submodule of M. Now the fact $N_{1} \oplus M_{2}$ is not a quasi n-absorbing submodule of M follows from Lemma 2.20. The proof is complete.

Now we establish some facts for $N_{1} \bigoplus N_{2}$ to be a quasi n-absorbing submodule of $M_{1} \oplus M_{2}$ for some positive integer $0<n$.

Theorem 2.21. Let M_{1}, M_{2} be R-modules and N_{1} (resp., N_{2}) be a submodule of M_{1} (resp., M_{2}). If $N_{1} \oplus N_{2}$ is a weakly quasi n-absorbing submodule of $M=M_{1} \oplus M_{2}$ that is not quasi n-absorbing submodule for some positive integer $n>0$, then one of the following two assertions hold:
(1) N_{1} and N_{2} are weakly quasi n-absorbing submodules and if there exists an unbreakable element a of N_{1}, then $a^{n} N_{2}=0$.
(2) N_{1} and N_{2} are weakly quasi n-absorbing submodules and if there exists an unbreakable element b of N_{2}, then $b^{n} N_{1}=0$.
Proof. (1) Suppose that $N_{1} \oplus N_{2}$ is a weakly quasi n-absorbing submodule that is not quasi n-absorbing submodule of M. Let $a \in R$ and $x \in M_{1}$ with $0 \neq a^{n} x \in N_{1}$. Then $0 \neq a^{n}(x, 0) \in N_{1} \oplus N_{2}$ which is a weakly quasi n absorbing submodule of M. It follows that $a^{n-1} x \in N_{1}$ or $a^{n} \in\left(N_{1}:_{R} M_{1}\right)$. Hence, N_{1} is a weakly quasi n-absorbing submodule of M_{1}. The same argument shows that N_{2} is a weakly quasi n-absorbing submodule of M_{2}. Now, suppose that N_{1} admits an unbreakable element $a \in R$. Then $a^{n} x=0$ but neither $a^{n} \in\left(N_{1}:_{R} M_{1}\right)$ nor $a^{n-1} x \in N_{1}$ for some $x \in M_{1}$. Assume that $a^{n} N_{2} \neq 0$.

Then there exists $z \in N_{2}$ such that $0 \neq a^{n} z \in N_{2}$, so $0 \neq a^{n}(x, z)=\left(0, a^{n} z\right) \in$ $N_{1} \oplus N_{2}$ which is a weakly quasi n-absorbing submodule of M. So, either $a^{n-1}(x, z) \in N_{1} \oplus N_{2}$ or $a^{n} \in\left(N_{1} \oplus N_{2}:_{R} M\right)$. Therefore, $a^{n-1} x \in N_{1}$ or $a^{n} \in\left(N_{1}:_{R} M_{1}\right)$, which is a contradiction. Hence, $a^{n} N_{2}=0$.
(2) Similar proof as assertion (1) above.

Remark 2.22. Let N_{1} (resp., N_{2}) be a submodule of M_{1} (resp., M_{2}). If N_{1} and N_{2} are weakly quasi n-absorbing submodules, then $N_{1} \oplus N_{2}$ need not be a weakly quasi n-absorbing submodule of $M_{1} \oplus M_{2}$. For instance, take $M_{1}=$ $M_{2}=\mathbb{Z}$ and $N_{1}=2^{2} \mathbb{Z}, N_{2}=3 \mathbb{Z}$. It is clear that N_{1} and N_{2} are weakly quasi 2-absorbing submodules of \mathbb{Z} since they are quasi 2 -absorbing submodules. However, $N_{1} \oplus N_{2}$ is not a weakly quasi 2-absorbing submodule of $M_{1} \oplus M_{2}$ since $2^{2} .(3,3) \in 2^{2} \mathbb{Z} \oplus 3 \mathbb{Z}$, but neither $2^{2}=4 \in\left(2^{2} \mathbb{Z} \oplus 3 \mathbb{Z}: \mathbb{Z} \mathbb{Z} \oplus \mathbb{Z}\right)=12 \mathbb{Z}$ nor $2(3,3)=(6,6) \in 2^{2} \mathbb{Z} \oplus 3 \mathbb{Z}$.

The next theorem establishes about when the submodule $N_{1} \bigoplus N_{2}$ is a weakly quasi $(n+1)$-absorbing submodule.

Theorem 2.23. Let M_{1}, M_{2} be R-modules and N_{1} (resp., N_{2}) be a submodule of M_{1} (resp., $\left.M_{2}\right)$. Consider the following assertions:
(1) N_{1} is a weakly quasi n-absorbing submodule of M_{1}, N_{2} is a quasi n absorbing submodule of M_{2} and $a^{n} y=0$ whenever $a^{n} y \in N_{2}$, for some $a \in R$ and $y \in M_{2}$.
(2) N_{2} is a weakly quasi n-absorbing submodule of M_{2}, N_{1} is a quasi n absorbing submodule of M_{1} and $a^{n} x=0$ whenever $a^{n} x \in N_{1}$, for some $a \in R$ and $x \in M_{1}$.
If (1) or (2) holds, then $N_{1} \bigoplus N_{2}$ is a weakly quasi $(n+1)$-absorbing submodule of M.

Proof. Suppose that (1) holds. Let $0 \neq a^{n+1}(x, y) \in N_{1} \oplus N_{2}$ for some $a \in R$ and $(x, y) \in M$. From assumption $a^{n}(a y)=0$ and $0 \neq a^{n}(a x) \in N_{1}$ and N_{2} is a quasi n-absorbing submodule of M_{2}. Since N_{1} is a weakly quasi n absorbing submodule of M_{1}, it follows that $a^{n} x \in N_{1}$. On the other hand $a^{n}(a y)=0 \in N_{2}$ and the fact that N_{2} is a quasi n-absorbing submodule of M_{2} gives $a^{n} y \in N_{2}$. Finally, $a^{n}(x, y) \in N_{1} \oplus N_{2}$. Hence, $N_{1} \oplus N_{2}$ is a weakly quasi $n+1$-absorbing submodule of M. The same argument if assertion (2) holds.

The next proposition examines the weakly quasi n-absorbing submodules under localization.

Proposition 2.24. Let N be a proper submodule of an R-module M and S be a multiplicative closed subset consisting entirely of nonzero divisor elements of R such that $\left(N:_{R} M\right) \cap S=\emptyset$. If N is a weakly quasi n-absorbing submodule of M, then $S^{-1} N$ is a weakly quasi n-absorbing submodule of $S^{-1} M$.

Proof. Let $\frac{0}{1} \neq\left(\frac{a}{s_{1}}\right)^{n}\left(\frac{m}{s_{2}}\right) \in S^{-1} N$. Then $0 \neq u a^{n} m \in N$ for some element u of S. So, $0 \neq(u a)^{n} m \in N$ which is a weakly quasi n-absorbing submodule of M. Therefore, $(u a)^{n-1} m \in N$ or $(u a)^{n} \in\left(N:_{R} M\right)$. Consequently, $\frac{u^{n-1} a^{n-1} m}{u^{n-1} s_{1}^{n-1} s_{2}}=\left(\frac{a}{s_{1}}\right)^{n-1}\left(\frac{m}{s_{2}}\right) \in S^{-1} N$ or $\frac{u^{n} a^{n}}{u^{n} s_{1}^{n}}=\left(\frac{a}{s_{1}}\right)^{n} \in S^{-1}\left(N:_{R} M\right) \subseteq$ $\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)$. Hence, $S^{-1} N$ is a weakly quasi n-absorbing submodule of $S^{-1} M$, as desired.

The following proposition studies the weakly quasi n-absorbing property under homomorphism.

Proposition 2.25. Let $f: M \rightarrow M^{\prime}$ be a homomorphism of R-modules.
(1) Assume that f is a monomorphism. If N^{\prime} is a weakly quasi n-absorbing submodule of M^{\prime}, then $f^{-1}\left(N^{\prime}\right)$ is a weakly quasi n-absorbing submodule of M.
(2) Assume that f is an epimorphism and $\operatorname{ker}(f) \subseteq N$. If N is a weakly quasi n-absorbing submodule of M, then $f(N)$ is a weakly quasi n absorbing submodule of M^{\prime}.

Proof. (1) Assume that f is a monomorphism of R-modules and N^{\prime} is a weakly quasi n-absorbing submodule of M^{\prime}. Let $0 \neq a^{n} x \in f^{-1}\left(N^{\prime}\right)$ for some $a \in R$ and $x \in M$. Then $0 \neq a^{n} f(x) \in N^{\prime}$ which is a weakly quasi n-absorbing submodule of M^{\prime}. So, $a^{n} \in\left(N^{\prime}:_{R} M^{\prime}\right)$ or $a^{n-1} f(x) \in N^{\prime}$. Therefore, $a^{n} M^{\prime} \subseteq$ N^{\prime} or $f\left(a^{n-1} x\right) \in N^{\prime}$. Hence, it follows that $a^{n} M \subseteq f^{-1}\left(N^{\prime}\right)$ or $a^{n-1} x \in$ $f^{-1}\left(N^{\prime}\right)$. Thus, $a^{n} \in\left(f^{-1}\left(N^{\prime}\right):_{R} M\right)$ or $a^{n-1} x \in f^{-1}\left(N^{\prime}\right)$, making $f^{-1}\left(N^{\prime}\right)$, a weakly quasi n-absorbing submodule of M.
(2) Assume that f is an epimorphism, $\operatorname{ker}(f) \subseteq N$ and N is a weakly quasi n-absorbing submodule of M. Let $a \in R, x^{\prime} \in M^{\prime}$ such that $0 \neq a^{n} x^{\prime} \in f(N)$. Then there exists $x \in M$ such $x^{\prime}=f(x)$. Since $0 \neq a^{n} x^{\prime}=a^{n} f(x)=f\left(a^{n} x\right) \in$ $f(N)$ and $\operatorname{ker}(f) \subseteq N$, then $0 \neq a^{n} x \in N$ which is a weakly quasi n-absorbing submodule of M. Therefore, $a^{n} \in\left(N:_{R} M\right)$ or $a^{n-1} x \in N$. And so $a^{n} M \subseteq N$ or $a^{n-1} x \in N$. It follows that $a^{n} M^{\prime} \subseteq f(N)$ or $a^{n-1} f(x) \in f(N)$. Hence, $a^{n} \in\left(f(N):_{R} M^{\prime}\right)$ or $a^{n-1} x^{\prime} \in f(N)$. Finally, $f(N)$ is a weakly quasi n absorbing submodule of M^{\prime}, as desired.

We close this paper by studying about when the intersection of family of $\left(N_{\alpha}\right)_{\alpha \in I}$ is a weakly quasi n-absorbing submodule.

Theorem 2.26. Consider $\left(N_{\alpha}\right)_{\alpha \in I}$ a chain of weakly quasi n-absorbing submodules of an R-module M. Then $N=\bigcap_{\alpha \in I} N_{\alpha}$ is a weakly quasi n-absorbing submodule of M.

Proof. Let $0 \neq a^{n} x \in N$ for some $a \in R$ and $x \in M$. Clearly $0 \neq a^{n} x \in N_{\alpha}$ for each $\alpha \in I$. Two cases are then possible:

Case 1: If $a^{n} \in\left(N_{\alpha}:_{R} M\right)$ for all $\alpha \in I$, then $a^{n} \in \bigcap\left(N_{\alpha}:_{R} M\right)=\left(\bigcap N_{\alpha}:_{R}\right.$ $M)=\left(N:_{R} M\right)$.

Case 2 : Assume that $a^{n} \notin\left(N_{\alpha^{\prime}}:_{R} M\right)$ for some $\alpha^{\prime} \in I$. Then $a^{n} \notin$ $\left(N_{\alpha}:_{R} M\right)$ for all $N_{\alpha} \subseteq N_{\alpha^{\prime}}$. Using the fact that N_{α} is a weakly quasi n absorbing submodule of M for each $\alpha \in I$, then $a^{n-1} x \in N_{\alpha}$ for all $N_{\alpha} \subseteq N_{\alpha^{\prime}}$. Consequently, it follows that $a^{n-1} x \in N=\bigcap_{\alpha \in I} N_{\alpha}$.

Finally, $N=\bigcap_{\alpha \in I} N_{\alpha}$ is a weakly quasi n-absorbing submodule of M, as desired.

References

[1] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 2003 (2003), no. 27, 1715-1724. https://doi.org/10.1155/S0161171203202180
[2] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra 36 (2008), no. 12, 4620-4642. https://doi.org/10.1080/00927870802186805
[3] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1672. https://doi.org/10.1080/00927871003738998
[4] , On (m, n)-closed ideals of commutative rings, J. Algebra Appl. 16 (2017), no. 1, 1750013, 21 pp. https://doi.org/10.1142/S021949881750013X
[5] D. F. Anderson, A. Badawi, and B. Fahid, Weakly (m, n)-closed ideals and $(m, n)-$ von Neumann regular rings, J. Korean Math. Soc. 55 (2018), no. 5, 1031-1043. https: //doi.org/10.4134/JKMS.j170342
[6] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429. https://doi.org/10.1017/S0004972700039344
[7] A. Badawi and A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013), no. 2, 441-452.
[8] E. Y. Celikel, On (k, n)-closed submodules, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 64 (2018), no. 1, 173-186.
[9] A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9 (2011), no. 3, 577-584.
[10] , On n-absorbing submodules, Math. Commun. 17 (2012), no. 2, 547-557.
[11] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779. https://doi.org/10.1080/00927878808823601
[12] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29 (1986), no. 1, 37-39. https://doi.org/10.4153/CMB-1986-006-7
[13] H. Mostafanasab and A. Yousefian Darani, On n-absorbing ideals and two generalizations of semiprime ideals, Thai J. Math. 15 (2017), no. 2, 387-408.

Mohammed Issoual
Laboratory of Modeling and Mathematical Structures
Department of Mathematics
Faculty of Science and Technology of Fez, Box 2202
University S.M. Ben Abdellah Fez
Morocco
Email address: issoual2@yahoo.fr

Najib Mahdou
Laboratory of Modeling and Mathematical Structures
Department of Mathematics
Faculty of Science and Technology of Fez, Box 2202
University S.M. Ben Abdellah Fez
Morocco
Email address: mahdou@hotmail.com
Moutu Abdou Salam Moutui
Division of Science, Technology, and Mathematics
American University of Afghanistan
Kabul, Afghanistan
Email address: mmoutui@auaf.edu.af

[^0]: Received January 3, 2021; Accepted March 8, 2021.
 2010 Mathematics Subject Classification. Primary 13A15, $13 B 02$.
 Key words and phrases. Quasi n-absorbing submodule, weakly quasi n-absorbing submodule.

