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ON WEAKLY QUASI n-ABSORBING SUBMODULES

Mohammed Issoual, Najib Mahdou, and Moutu Abdou Salam Moutui

Abstract. Let R be a commutative ring with 1 6= 0, n be a positive

integer and M be an R-module. In this paper, we introduce the concept

of weakly quasi n-absorbing submodule which is a proper generalization
of quasi n-absorbing submodule. We define a proper submodule N of

M to be a weakly quasi n-absorbing submodule if whenever a ∈ R and
x ∈ M with 0 6= anx ∈ N, then an ∈ (N :R M) or an−1x ∈ N. We study

the basic properties of this notion and establish several characterizations.

1. Introduction

Throughout the whole paper, all rings are assumed to be commutative with
1 6= 0, all modules are considered to be unitary and n is a positive integer. Let
R be a ring with 1 6= 0, M be an R-module and N be a proper submodule of
M. In [9], the authors introduced and investigated the concept of 2-absorbing
(resp., weakly 2-absorbing) submodules. They defined a submoduleN to be a 2-
absorbing submodule (resp., weakly 2-absorbing submodule) of M if whenever
a, b ∈ R and m ∈M with abm ∈ N (resp., 0 6= abm ∈ N), then ab ∈ (N :R M)
or am ∈ N or bm ∈ N. A more general concept than 2-absorbing submodule is
the concept n-absorbing submodule. From [10], a proper submodule N of M
is said to be an n-absorbing (resp., strongly n-absorbing) submodule of M if
whenever a1 · · · anm ∈ N for a1, . . . , an ∈ R and m ∈M (resp., I1 · · · InL ⊂ N
for ideals I1, . . . , In of R and a submodule L of M), then either a1 · · · an ∈
(N :R M) (resp., I1 · · · In ⊂ (N :R M)) or there are n − 1 of ai’s (resp., Ii’s)
whose product with m (resp., L) is in N . Recall that a proper submodule
N of M is called semiprime if whenever r ∈ R and m ∈ M with r2m ∈ N,
then rm ∈ N . For more details about the concept of n-absorbing and related
notions, we refer the reader to [3, 4, 6, 7, 13].

In this paper, we introduce the concept of weakly quasi n-absorbing sub-
module which is a proper generalization of quasi n-absorbing submodule. We
define a proper submodule N of M to be a weakly quasi n-absorbing submod-
ule if whenever a ∈ R and x ∈ M with 0 6= anx ∈ N, then an ∈ (N :R M) or
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an−1x ∈ N. We study the basic properties of this notion and establish several
characterizations.

We denote by
√
I, the radical of an ideal I of R. Let N be a submodule of

an R-module M. We denote by (N :R M), the residual of N by M, that is,
the set of all r ∈ R such that rM ⊆ N. For x ∈ M , we denote by ann(x), the
annihilator of x, that is, the set of all r ∈ R such that rx = 0.

2. Results

It is worthwhile recalling that a proper submodule N of an R-module M
is a quasi n-absorbing submodule for some positive integer n ≥ 1, if anx ∈ N
for some a ∈ R and x ∈ M with anx ∈ N, then either an−1x ∈ N or an ∈
(N :R M). Now, we recall the concept of weakly quasi n-absorbing submodule
defined in the introduction.

Definition. A proper submodule N of an R-module M is called a weakly quasi
n-absorbing submodule of M if 0 6= anx ∈ N for some a ∈ R and x ∈M, then
an ∈ (N :R M) or an−1x ∈ N.

Notice that from the previous definition, every quasi n-absorbing submodule
is clearly a weakly quasi n-absorbing submodule. However, a weakly quasi n-
absorbing submodule need not be a quasi n-absorbing submodule, as illustrated
in the next example.

Example 2.1. Let M := Z/12Z as Z-module and N = {0}. Clearly, N is
a weakly quasi 2-absorbing submodule of M . However, N is not a quasi 2-
absorbing submodule of M since (N :Z M) = 12Z and 22 · 3 ∈ N and neither
22 ∈ (N :Z M) nor 2 · · · 3 ∈ N.

Now, we introduce the following definition which will be useful for studying
the weakly quasi n-absorbing submodules.

Definition. Let R be a ring, M be an R-module and N be a weakly quasi
n-absorbing submodule of M. An element a ∈ R is called an unbreakable
element of N if there exists an element x ∈ M such that anx = 0 and neither
an ∈ (N :R M) nor an−1x ∈ N.

It is worthwhile mentioning that if N is a weakly quasi n-absorbing submod-
ule of M and there is no unbreakable element, then N is a quasi n-absorbing
submodule of M. The next lemma gives some basic facts about unbreakable
elements.

Lemma 2.2. Let R be a ring, M be an R-module and N be a proper weakly
quasi n-absorbing submodule of M. If a ∈ R is an unbreakable element of N.
Then the following statements hold:

(1) anN = 0.
(2) a+ s is an unbreakable element of N for every s ∈ (N :R M).
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Proof. (1) Let a be an unbreakable element of N. Then there exists x ∈ M
with anx = 0 but neither an ∈ (N :R M) nor an−1x ∈ N. Assume by the
way of contradiction that 0 6= anN, then 0 6= any ∈ N for some y ∈ N. Since
N is a weakly quasi n-absorbing submodule of M and an /∈ (N :R M), then
an−1y ∈ N. On the other hand, 0 6= an(x+ y) = any ∈ N and an /∈ (N :R M)
implies that an−1(x + y) ∈ N. Thus an−1x ∈ N , which is a contradiction.
Hence, anN = 0.

(2) Since a is an unbreakable element of N , then there exists x ∈ M with
anx = 0 and neither an ∈ (N :R M) nor an−1x ∈ N. Now let s ∈ (N :R M).
Assume that 0 6= (a+ s)nx. We have:

(a+ s)nx =

m−1∑
j=0

(
n
j

)
ajsn−jx ∈ N.

The fact that N is a weakly quasi n-absorbing submodule of M, gives either
(a+ s)n−1x ∈ N or (a+ s)n ∈ (N :R M). Two cases are then possible:

Case 1 : (a+ s)n−1x ∈ N. Then one can easily check that an−1x ∈ N since
for all j = 1, . . . , n− 1, ajsn−1−jx ∈ N, the desired contradiction.

Case 2 : (a + s)n ∈ (N :R M). Since ajsn−j ∈ (N :R M), then an ∈ (N :R
M). Hence, (a+s)nx = 0 and neither (a+s)n−1x ∈ N nor (a+s)n ∈ (N :R M).
Thus, it follows that a+ s is an unbreakable element of N.

Finally, a+ s is an unbreakable element of N, as desired. �

Theorem 2.3. Let R be a ring, M be an R-module and N be a proper weakly
quasi n-absorbing submodule which is not quasi n-absorbing submodule of M.
Then (N :R M) ⊆

√
ann(N).

Proof. Since N is a weakly quasi n-absorbing submodule which is not quasi
n-absorbing submodule of M, then there exists an unbreakable element b of
N. By Lemma 2.2(2), for every a ∈ (N :R M), we have (b + a)nN = 0. So,

a + b ∈
√

ann(N). By Lemma 2.2(1), b ∈
√

ann(N) and so a ∈
√

ann(N).

Hence, (N :R M) ⊆
√

ann(N), as desired. �

Let R be a ring and M be an R-module. Recall that M is called a multipli-
cation module if for each submodule N of M,N = IM for some ideal I of R.
In this case, we can take I = (N :R M) [11]. Also, recall that for a submodule
N of M , if N = IM for some ideal I of R, then I is called a presentation ideal
of N. Clearly, every submodule of M has a presentation ideal if and only if M
is a multiplication module. Let N and K be submodules of a multiplication
R-module M with N = I1M and K = I2M for some ideals I1 and I2 of R, the
product N and K denoted by NK is defined by NK = I1I2M. From [1, The-
orem 3.4], the product of N and K is independent of presentation of N and
K. Moreover, for a, b ∈M, by ab, we mean the product of Ra and Rb. Clearly,
NK is a submodule and NK ⊆ N ∩K [1]. A submodule N of an R module
M is called nilpotent if (N :R M)kN = 0 for some positive integer k [2]. The
next corollary is a consequence of Theorem 2.3.
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Corollary 2.4. Let R be a Noetherian ring and M be an R-module. If N is
a proper weakly quasi n-absorbing submodule which is not quasi n-absorbing
submodule of M. Then:

(1) N is nilpotent.
(2) If M is a faithful multiplication module, then Np = 0 for some positive

integer p.

Proof. (1) By Theorem 2.3, we have (N :R M) ⊆
√

ann(N). Since R is Noe-

therian, then there exists a positive integer k ≥ 1 such that (N :R M)k ⊆
ann(N). So, (N :R M)kN = 0. Hence, N is a nilpotent submodule of M.

(2) By assertion (1) above, we have (N :R M)kN = 0 for some positive
integer k ≥ 1. It follows that (N :R M)k+1 ⊆ ((N :R M)kN :R M) = (0 :R
M) = 0, as M is faithful. Therefore, (N :R M)k+1 = 0. Thus, Nk+1 = 0. �

Let N be a proper submodule of a nonzero R-module M. Then the M -radical
of N, denoted here by M −

√
N is defined in [12] to be the intersection of all

prime submodules of M containing N. It is shown in [11, Theorem 2.12] that

if N is a proper submodule of M, then M −
√
N = M −

√
(N :R M)M. The

next corollary is an application of Theorem 2.3.

Corollary 2.5. Let R be a ring, M be a multiplication R-module and N be
a proper faithful weakly quasi n-absorbing submodule which is not quasi n-
absorbing submodule of M. Then N ⊆M −

√
0.

Proof. Since M is a multiplication module, then N = (N :R M)M. So, by

Theorem 2.3, it follows that N = (N :R M)M ⊆
√

0M = M −
√

0, as N is
faithful. �

Recall that a ring is called von Neumann regular if, for every x ∈ R there
exists y ∈ R such that x2y = x. It is well known that a commutative ring is
von Neumann regular if and only if every proper ideal is radical. The next
corollary is another consequence of Theorem 2.3.

Corollary 2.6. Let R be a von Neumann regular ring, M be an R-module
and N be a proper weakly quasi n-absorbing submodule which is not quasi n-
absorbing submodule of M. Then (N :R M)N = 0.

Proof. Assume that R is a von Neumann regular ring. Since N is a weakly
quasi n-absorbing submodule which is not quasi n-absorbing submodule of M ,
then by Theorem 2.3, (N :R M) ⊆

√
ann(N). Using the fact that R is a

von Neumann regular ring, then
√
ann(N) = ann(N). Thus, it follows that

(N :R M)N = 0. �

The next corollary is another application of Corollary 2.6.

Corollary 2.7. Let R be a von Neumann regular ring, M be a faithful R-
module and N be a proper weakly quasi n-absorbing submodule which is not
quasi n-absorbing submodule of M. Then (N :R M)2 = 0.
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Proof. By Corollary 2.6, we have (N :R M)N = 0. So, (N :R M)2 ⊆ ((N :R
M)N :R M) = (0 :R M) = ann(M) = 0 as M is faithful and so (N :R M)2 = 0,
as desired. �

In the following theorem, we establish that for a ring R in which 2 is unit of
R and M be an R-module, we have (N :R M)2N = 0 for every weakly quasi
2-absorbing submodule N which is not quasi 2-absorbing submodule of M .

Theorem 2.8. Let R be a ring with 2 is unit in R and M be an R-module.
If N is a weakly quasi 2-absorbing submodule which not a quasi 2-absorbing
submodule, then (N :R M)2N = 0.

Proof. By Lemma 2.2, for every s ∈ (N :R M), (a + s)2N = (a − s)2N = 0
where a is an unbreakable element of N. Thus 2(a2 + s2)N = 2s2N = 0. Since
2 is unit, then s2N = 0 for every s ∈ (N :R M). Now let s, t ∈ (N :R M), we
have 2stN = ((s + t)2 − s2 − t2)N = 0, so stN = 0 as 2 is unit. We conclude
that (N :R M)2N = 0. �

Let M be an R-module and N be a proper submodule of M. We say that
N is a weakly strongly quasi n-absorbing submodule of M if whenever 0 6=
InL ⊆ N for some proper ideal I of R and a proper submodule of M, then
either In ⊆ (N :R M) or In−1L ⊆ N. It is clear that a weakly strongly
quasi n-absorbing submodule is a weakly quasi n-absorbing submodule. In
the next theorem, we show that the notions weakly strongly quasi n-absorbing
submodule and weakly quasi n-absorbing submodule collapse in the case the
ring R is a principal domain.

Theorem 2.9. Let R be a principal domain and N be a proper submodule of
an R-module M. Then the following assertions are equivalent:

(1) N is a weakly quasi n-absorbing submodule of M.
(2) N is a weakly strongly quasi n-absorbing submodule of M.

Proof. (1)⇒ (2) Let 0 6= InL ⊆ N for some proper ideal I of R and a proper
submodule L of M. Since R is a principal domain, then there exists an element
a ∈ R such that I = Ra. So, 0 6= anL ⊆ N. Assume that an /∈ (N :R M).
we claim that an−1L ⊆ N. Indeed, let x ∈ L. If 0 6= anx, then an−1x ∈ N
since N is a weakly quasi n-absorbing submodule and an /∈ (N :R M). Now
assume that anx = 0. Since anL 6= 0, then 0 6= any = an(x+ y) ∈ N for some
y ∈ N. Consequently, an−1(x+ y) ∈ N and so an−1x ∈ N as an−1y ∈ N which
is a weakly quasi n-absorbing submodule. Therefore, an−1L ⊆ N . Hence,
In−1L ⊆ N.

(2)⇒ (1) Straightforward. �

Proposition 2.10. Let N be a proper submodule of M . Then the following
statements are equivalent:

(1) If 0 6= InL ⊆ N for some ideal I of R and submodule L of M , then
either In ⊆ (N :R M) or In−1L ⊆ N.
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(2) If 0 6= Inx ⊆ N for some ideal I of R and x ∈M, then In ⊆ (N :R M)
or In−1x ⊆ N.

Proof. (1)⇒ (2) Straightforward.
(2)⇒ (1) Suppose that 0 6= InL ⊆ N for some ideal I of R and submodule

L of M. Assume that In 6⊆ (N :R M) and we show that In−1L ⊆ N. By the
way of contradiction, suppose In−1L 6⊆ N. Then there exists an element x of
L with In−1x 6⊆ N. Two cases are then possible:

Case 1 : If 0 6= Inx ⊆ N . Since In 6⊆ (N :R M), from assumption it follows
that In−1x ⊆ N , which is a contradiction.

Case 2 : If Inx = 0. The fact that 0 6= InL ⊆ N, there exists an element y
of L with 0 6= Iny ⊆ N. Now 0 6= In(x+ y) = Iny ⊆ N. Since In 6⊆ (N :R M),
then it follows that In−1y ⊆ N and In−1(x + y) ⊆ N . Hence, In−1x ⊆ N ,
which is a contradiction again.

Finally, In−1L ⊆ N. �

In the next proposition, we study the stability of homomorphic image of a
weakly quasi n-absorbing submodule.

Proposition 2.11. Let N,L be submodules of an R-module M with L ⊆ N.
If N is a weakly quasi n-absorbing submodule of M, then N/L is a weakly
quasi n-absorbing submodule of M/L. The converse holds if L is a weakly quasi
n-absorbing submodule of M.

Proof. Assume that N is a weakly quasi n-absorbing submodule of M . Let
a ∈ R and x + L ∈ M/L with 0M/L 6= an(x + L) ∈ N/L. If an ∈ (N :R
M), then we are done. We may assume that an /∈ (N :R M). The fact that
0M/L 6= an(x + L) implies that anx ∈ N and anx /∈ L. So, 0 6= anx ∈ N.
Since N is a weakly quasi n-absorbing submodule of M and an /∈ (N :R M),
then an−1x ∈ N. Therefore, an−1(x+L) ∈ N/L and so N/L is a weakly quasi
n-absorbing submodule of M/N. Conversely, assume that L is a weakly quasi n-
absorbing submodule of M and N/L is a weakly quasi n-absorbing submodule
of M/L. Let a ∈ R and x ∈ M with 0 6= anx ∈ N. Then an(x + L) ∈ N/L.
If an(x + L) = 0M/L, then 0 6= anx ∈ L. Using the fact that L is a weakly

quasi n-absorbing submodule of M, then either an−1x ∈ L ⊆ N or an ∈ (L :R
M) ⊆ (N :R M). If an(x + L) 6= 0M/L. Then either an ∈ (N/L :R M/L) or

an−1(x + L) ∈ N/L. Hence, an ∈ (N :R M) or an−1x ∈ N. Finally, N is a
weakly quasi n-absorbing submodule of M, as desired. �

Recall that from [8, Definition 2.20(2)], a submodule N of an R-module M is
said to be a strongly (m,n)-closed submodule if whenever I is an ideal and L is
a submodule of M with ImL ⊆ N implies that In ⊆ (N :R M) or In−1L ⊆ N .

Theorem 2.12. Let N be a proper submodule of an R-module M. Then the
following statements are equivalent:

(1) If 0 6= InK ⊆ N for some ideal I of R and submodule K of M, then
either In ⊆ (N :R M) or In−1K ⊆ N .
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(2) For any ideal I of R and N ⊆ L a submodule of M with 0 6= ImL ⊆ N
implies In ⊆ (N :R M) or In−1L ⊆ N.

Proof. (1)⇒ (2) Straightforward.
(2) ⇒ (1) Let I be an ideal of R and K be a submodule of M with 0 6=

ImK ⊆ N. Then 0 6= Im(K + N) ⊆ N. Since N is a strongly (m,n)-closed
submodule of M and L := K + N ⊇ N , then In ⊆ (N :R M) or In−1L =
In−1(K +N) ⊆ N from the hypothesis (2). Thus In ⊆ (N :R M) or In−1K ⊆
N. �

In the next theorem we show the relationship between a weakly quasi n-
absorbing submodule N and the ideal (N :R x) of R, where x ∈M \N . Recall
from [5] that an ideal I of a ring R is a weakly semi n-absorbing ideal of R if
0 6= xn+1 ∈ I implies xn ∈ I.

Theorem 2.13. Let M be an R-module and N be a proper submodule of M.

(1) If (N :R x) is a weakly semi n-absorbing ideal of R for every x ∈M \N,
then N is a weakly quasi n-absorbing submodule of M.

(2) Assume that N is a weakly quasi n-absorbing submodule of M. Let x
be an element of M \N such that ann(x) is a quasi n-absorbing ideal
of R. Then (N :R x) is a weakly quasi n-absorbing ideal of R for each
x ∈M \N.

Proof. (1) Let 0 6= any ∈ N for some a ∈ R and y ∈M. If y ∈ N , then we are
done. We may assume y ∈ M \ N. If an ∈ (N :R M), then we are done. So,
we may assume an /∈ (N :R M) and so 0 6= an. Since an ∈ (N :R y) which is a
weakly semi n-absorbing ideal of R, then an−1 ∈ (N :R y) and so an−1y ∈ N.
Hence, N is a weakly quasi n-absorbing submodule of M.

(2) Let x ∈ M \ N. Suppose that 0 6= any ∈ (N :R x) and an /∈ (N :R x)
for some a ∈ R and y ∈ M. If 0 6= anyx ∈ N. Since N is a weakly quasi
n-absorbing submodule of M and an /∈ (N :R M), then an−1yx ∈ N. Hence,
an−1y ∈ (N :R x). Now, suppose that anyx = 0. From assumption, it follows
that an−1y ∈ ann(x), which implies that an−1y ∈ (N :R x). Consequently,
(N :R x) is a weakly quasi n-absorbing ideal of R, as desired. �

Theorem 2.14. Let M be a faithful R-module and N be a proper submodule
of M. If N is a weakly quasi n-absorbing submodule of R, then (N :R M) is a
weakly quasi n-absorbing ideal of R. The converse holds if M is a cyclic faithful
R-module.

The proof of the previous theorem requires the following lemma.

Lemma 2.15. Let N be a proper submodule of an R-module M. Then the
following statements are equivalent:

(1) N is a weakly quasi n-absorbing submodule of M.
(2) For every a ∈ R and L a submodule of M with 0 6= anL ⊂ N, then

an−1L ⊂ N or an ∈ (N :R M).
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Proof. (1) ⇒ (2) Assume that N is a weakly quasi n-absobing submodule of
M. Let a ∈ R and L be a submodule of M such that 0 6= anL ⊂ N and
an /∈ (N :R M). Let x ∈ L. If 0 6= anx, then an−1x ∈ N (as N is a weakly
quasi n-absorbing submodule of R). We may assume that anx = 0. The fact
that 0 6= anL ⊂ N gives 0 6= any ∈ N for some y ∈ L. Since an /∈ (N :R M),
it follows that an−1y ∈ N . Set z = y + x ∈ L. So, anz 6= 0 and with similar
argument as above, we get an−1z ∈ L. Therefore, an−1x ∈ N. Hence, for every
x ∈ L, an−1x ∈ N. Finally, an−1L ⊂ N.

(2) ⇒ (1) Assume that for every a ∈ R and L a submodule of M with
0 6= anL ⊂ N, then an−1L ⊂ N or an ∈ (N :R M). Let 0 6= anx ∈ N for some
a ∈ R and x ∈ M. Set L = Rx. Then 0 6= anL ⊂ N. From assumption, we get
an ∈ (N :R M) or an−1L ⊂ N and so an−1x ∈ N or an ∈ (N :R M). Hence, N
is weakly quasi n-absorbing submodule of M , as desired. �

Proof of Theorem 2.14. Let 0 6= anb ∈ (N :R M) for some a, b ∈ R. Since
M is a faithful R-module, then 0 6= anbM = an(bM) ⊂ N. By Lemma 2.15,
an−1(bM) = an−1bM ⊂ N or an ∈ (N :R M). Hence, (N :R M) is a weakly
quasi n-absorbing ideal of R. Conversely, assume that (N :R M) is a weakly
quasi n-absorbing ideal of R and M = Rm is a cyclic faithful R-module. Let
a ∈ R and x ∈ M such that 0 6= anx ∈ N. Then there exists b ∈ R such that
x = bm. So, 0 6= anbm ∈ N. Therefore, 0 6= anb ∈ (N :R m) = (N :R M).
The fact that (N :R M) is a weakly quasi n-absorbing ideal of R, gives either
an ∈ (N :R M) or an−1b ∈ (N :R M). Hence, an ∈ (N :R M) or an−1bm =
an−1x ∈ N, making N , a weakly quasi n-absorbing submodule of M. �

It is worth to mention that in Theorem 2.14 the condition “M is a faithful R-
module” is necessary. Otherwise, if N is a weakly quasi n-absorbing submodule
of M, then (N :R M) need not be a weakly quasi n-absorbing ideal of R, as
shown in the next example.

Example 2.16. Consider the Z-module M := Z/16Z and N = {0}. Observe
that ann(M) = 16Z. So, M is not faithful. On the other hand, N is a weakly
quasi 2-absorbing submodule and (N :Z M) = 16Z is not a weakly quasi 2-
absorbing ideal of Z since 22.4 ∈ (N :Z M) but neither 2.4 = 8 ∈ (N :Z M) =
16Z nor 22 ∈ (N :Z M).

Let R be a ring. It is well known that a proper submodule N of an R-
module M is said to be a weakly semiprime submodule of M if 0 6= r2x ∈ N
for some r ∈ R and x ∈ M, then rx ∈ N. In the next theorem, we show that
the class of weakly semiprime submodules is contained in the class of weakly
quasi n-absorbing submodules for every positive integer n ≥ 2.

Theorem 2.17. Let R be a ring, M be an R-module and N be a proper sub-
module of M. If N is a weakly semiprime submodule of M, then N is a weakly
quasi n-absorbing submodule of M for every positive integer n ≥ 2.
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Proof. Let 0 6= anx ∈ N for some a ∈ R, x ∈ M and for some positive integer
n ≥ 2. Then 0 6= a2(an−2x) ∈ N. Since N is a weakly semiprime submodule of
M , we get 0 6= an−1x ∈ N. Hence, N is a weakly quasi n-absorbing submodule
of M, as desired. �

The following theorem shows that the intersection of a family of weakly
semiprime submodules is a weakly quasi-nabsorbing submodule.

Theorem 2.18. Let R be a ring, M be an R-module. Let (Ni)i∈I be a family of
weakly semiprime submodules ofM. Then

⋂
i∈I Ni is a weakly quasi n-absorbing

submodule of M for all positive integer n ≥ 2.

Proof. Suppose that 0 6= anx ∈ N :=
⋂
i∈I Ni for some a ∈ R and x ∈ M.

Then 0 6= anx ∈ Ni for all i ∈ I. Since Ni is a weakly semiprime module, then
ax ∈ Ni for all i ∈ I. Therefore, an−1x = an−2(ax) ∈ Ni for all i ∈ I and so
an−1x ∈ N. Hence,

⋂
i∈I Ni is a weakly quasi n-absorbing submodule of M for

all positive integer n ≥ 2. �

Theorem 2.19. Let M1,M2 be R-modules with M = M1⊕M2, n be a positive
integer and N1 (resp., N2) be a proper submodule of M1 (resp., M2). Then the
following statements are equivalent:

(1) N1 ⊕M2 (resp., M1 ⊕N2) is a weakly quasi n-absorbing submodule of
M which is not a quasi n-absorbing submodule.

(2) If N1 (resp., N2) is a weakly quasi n-absorbing submodule of M1 (resp.,
M2) which is not a quasi n-absorbing submodule of M1 (resp., M2) and
anM2 = 0 (resp., anM1 = 0) for every unbreakable element a of N1

(resp., N2).

The proof of the previous theorem needs the following lemma.

Lemma 2.20. Let M1,M2 be R-modules with M = M1 ⊕M2, n be a positive
integer and N1 (resp., N2) be proper weakly quasi n-absorbing submodule of M1

(resp., M2). Let a ∈ R. Then the following statements are equivalent:

(1) a is an unbreakable element of N1 (resp., N2).
(2) a is an unbreakable element of N1 ⊕M2 (resp., M1 ⊕N2).

Proof. Assume that a is an unbreakable element of N1. Then there exists
x ∈ M1 with anx = 0 and neither an ∈ (N1 :R M1) nor an−1x ∈ N1. Then
an(x, 0) = (0, 0) and neither an ∈ (N1 ⊕M2 :R M1 ⊕M2) nor an−1(x, 0) ∈
N1 ⊕M2. Hence, a is an unbreakable element of N1 ⊕M2. Conversely, assume
that a ∈ R is an unbreakable element of N1 ⊕ M2. So there exists (x, y) ∈
M1 ⊕M2 with an(x, y) = (0, 0) and neither an ∈ (N1 ⊕M2 :R M1 ⊕M2) nor
an−1(x, y) ∈ N1⊕M2. Hence, anx = 0 for x ∈M1 and neither an ∈ (N1 :R M1)
nor an−1x ∈ N1. Thus, a is an unbreakable element of N1.

With similar proof as above, one can easily show that a is an unbreakable
element of N2 if and only if a is an unbreakable element of M1 ⊕N2. �
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Proof of Theorem 2.19. (1) ⇒ (2) Assume that N1 ⊕M2 is a weakly quasi n-
absorbing submodule of M which is not a quasi n-absorbing submodule. Then
by Proposition 2.11, N1 ' N1⊕M2

0⊕M2
is a weakly n-absorbing submodule of M1.

Now, by Lemma 2.20, it follows that N1 is not a quasi n-absorbing submodule
of M1 since N1 admits an element which is unbreakable a ∈ R, as a is an
unbreakable element of N1⊕M2. It remains to show that if a is an unbreakable
element of N1, then anM2 = 0. Assume by the way of contradiction that a is
an unbreakable element of N1 and anM2 6= 0. Then any 6= 0 for some y ∈M2.
Since a is an unbreakable element of N1, then there exists x ∈M1 with anx = 0
and neither an ∈ (N1 :R M1) nor an−1x ∈ N1. Since 0 6= an(x, y) ∈ N1 ⊕M2,
then the fact that N1⊕M2 is a weakly quasi n-absorbing submodule of M1⊕M2

and an 6∈ (N1⊕M2 : M1⊕M2) give that an−1x ∈ N1, which is a contradiction.
Hence, anM2 = 0.

(2)⇒ (1) Assume that N1 is a weakly quasi n-absorbing which is not quasi
n-absorbing submodule of M1 and anM2 = 0 for every unbreakable a element
of N1. Let b ∈ R and (x, y) ∈ M1 ⊕M2 with 0 6= bn(x, y) ∈ N1 ⊕M2. If
0 6= bnx ∈ N1, then either bn ∈ (N1 ⊕M2 :R M) or bn−1(x, y) ∈ N1 ⊕M2.
Now, suppose that bn = 0 and neither bn ∈ (N1 :R M1) nor bn−1 ∈ N1, then
b is an unbreakable element of N1. From assumption, we have bnM2 = 0, and
so bn(x, y) = 0, which is a contradiction. Therefore, either bn ∈ (N1 ⊕M2 :R
M1 ⊕M2) or bn−1(x, y) ∈ N1 ⊕M2. Finally, we conclude that N1 ⊕M2 is
a weakly quasi n-absorbing submodule of M . Now the fact N1 ⊕M2 is not
a quasi n-absorbing submodule of M follows from Lemma 2.20. The proof is
complete. �

Now we establish some facts for N1

⊕
N2 to be a quasi n-absorbing sub-

module of M1 ⊕M2 for some positive integer 0 < n.

Theorem 2.21. Let M1,M2 be R-modules and N1 (resp., N2) be a submodule
of M1 (resp., M2). If N1 ⊕ N2 is a weakly quasi n-absorbing submodule of
M = M1⊕M2 that is not quasi n-absorbing submodule for some positive integer
n > 0, then one of the following two assertions hold:

(1) N1 and N2 are weakly quasi n-absorbing submodules and if there exists
an unbreakable element a of N1, then a

nN2 = 0.
(2) N1 and N2 are weakly quasi n-absorbing submodules and if there exists

an unbreakable element b of N2, then b
nN1 = 0.

Proof. (1) Suppose that N1 ⊕ N2 is a weakly quasi n-absorbing submodule
that is not quasi n-absorbing submodule of M . Let a ∈ R and x ∈ M1 with
0 6= anx ∈ N1. Then 0 6= an(x, 0) ∈ N1 ⊕ N2 which is a weakly quasi n-
absorbing submodule of M . It follows that an−1x ∈ N1 or an ∈ (N1 :R M1).
Hence, N1 is a weakly quasi n-absorbing submodule of M1. The same argument
shows that N2 is a weakly quasi n-absorbing submodule of M2. Now, suppose
that N1 admits an unbreakable element a ∈ R. Then anx = 0 but neither
an ∈ (N1 :R M1) nor an−1x ∈ N1 for some x ∈ M1. Assume that anN2 6= 0.



ON WEAKLY QUASI n-ABSORBING SUBMODULES 1517

Then there exists z ∈ N2 such that 0 6= anz ∈ N2, so 0 6= an(x, z) = (0, anz) ∈
N1 ⊕ N2 which is a weakly quasi n-absorbing submodule of M . So, either
an−1(x, z) ∈ N1 ⊕ N2 or an ∈ (N1 ⊕ N2 :R M). Therefore, an−1x ∈ N1 or
an ∈ (N1 :R M1), which is a contradiction. Hence, anN2 = 0.

(2) Similar proof as assertion (1) above. �

Remark 2.22. Let N1 (resp., N2) be a submodule of M1 (resp., M2). If N1

and N2 are weakly quasi n-absorbing submodules, then N1 ⊕ N2 need not be
a weakly quasi n-absorbing submodule of M1 ⊕M2. For instance, take M1 =
M2 = Z and N1 = 22Z, N2 = 3Z. It is clear that N1 and N2 are weakly quasi
2-absorbing submodules of Z since they are quasi 2-absorbing submodules.
However, N1 ⊕ N2 is not a weakly quasi 2-absorbing submodule of M1 ⊕M2

since 22.(3, 3) ∈ 22Z⊕ 3Z, but neither 22 = 4 ∈ (22Z⊕ 3Z :Z Z⊕Z) = 12Z nor
2(3, 3) = (6, 6) ∈ 22Z⊕ 3Z.

The next theorem establishes about when the submodule N1

⊕
N2 is a

weakly quasi (n+ 1)-absorbing submodule.

Theorem 2.23. Let M1,M2 be R-modules and N1 (resp., N2) be a submodule
of M1 (resp., M2). Consider the following assertions:

(1) N1 is a weakly quasi n-absorbing submodule of M1, N2 is a quasi n-
absorbing submodule of M2 and any = 0 whenever any ∈ N2, for some
a ∈ R and y ∈M2.

(2) N2 is a weakly quasi n-absorbing submodule of M2, N1 is a quasi n-
absorbing submodule of M1 and anx = 0 whenever anx ∈ N1, for some
a ∈ R and x ∈M1.

If (1) or (2) holds, then N1

⊕
N2 is a weakly quasi (n+1)-absorbing submodule

of M .

Proof. Suppose that (1) holds. Let 0 6= an+1(x, y) ∈ N1 ⊕N2 for some a ∈ R
and (x, y) ∈ M . From assumption an(ay) = 0 and 0 6= an(ax) ∈ N1 and
N2 is a quasi n-absorbing submodule of M2. Since N1 is a weakly quasi n-
absorbing submodule of M1, it follows that anx ∈ N1. On the other hand
an(ay) = 0 ∈ N2 and the fact that N2 is a quasi n-absorbing submodule of
M2 gives any ∈ N2. Finally, an(x, y) ∈ N1 ⊕N2. Hence, N1

⊕
N2 is a weakly

quasi n + 1-absorbing submodule of M . The same argument if assertion (2)
holds. �

The next proposition examines the weakly quasi n-absorbing submodules
under localization.

Proposition 2.24. Let N be a proper submodule of an R-module M and S be
a multiplicative closed subset consisting entirely of nonzero divisor elements of
R such that (N :R M) ∩ S = ∅. If N is a weakly quasi n-absorbing submodule
of M , then S−1N is a weakly quasi n-absorbing submodule of S−1M .
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Proof. Let 0
1 6= ( as1 )n(ms2 ) ∈ S−1N . Then 0 6= uanm ∈ N for some element

u of S. So, 0 6= (ua)nm ∈ N which is a weakly quasi n-absorbing submod-
ule of M . Therefore, (ua)n−1m ∈ N or (ua)n ∈ (N :R M). Consequently,
un−1an−1m
un−1sn−1

1 s2
= ( as1 )n−1(ms2 ) ∈ S−1N or unan

unsn1
= ( as1 )n ∈ S−1(N :R M) ⊆

(S−1N :S−1R S
−1M). Hence, S−1N is a weakly quasi n-absorbing submodule

of S−1M , as desired. �

The following proposition studies the weakly quasi n-absorbing property
under homomorphism.

Proposition 2.25. Let f : M →M ′ be a homomorphism of R-modules.

(1) Assume that f is a monomorphism. If N ′ is a weakly quasi n-absorbing
submodule of M ′, then f−1(N ′) is a weakly quasi n-absorbing submod-
ule of M .

(2) Assume that f is an epimorphism and ker(f) ⊆ N . If N is a weakly
quasi n-absorbing submodule of M , then f(N) is a weakly quasi n-
absorbing submodule of M ′.

Proof. (1) Assume that f is a monomorphism of R-modules and N ′ is a weakly
quasi n-absorbing submodule of M ′. Let 0 6= anx ∈ f−1(N ′) for some a ∈ R
and x ∈ M . Then 0 6= anf(x) ∈ N ′ which is a weakly quasi n-absorbing
submodule of M ′. So, an ∈ (N ′ :R M

′) or an−1f(x) ∈ N ′. Therefore, anM ′ ⊆
N ′ or f(an−1x) ∈ N ′. Hence, it follows that anM ⊆ f−1(N ′) or an−1x ∈
f−1(N ′). Thus, an ∈ (f−1(N ′) :R M) or an−1x ∈ f−1(N ′), making f−1(N ′),
a weakly quasi n-absorbing submodule of M .

(2) Assume that f is an epimorphism, ker(f) ⊆ N and N is a weakly quasi
n-absorbing submodule of M . Let a ∈ R, x′ ∈M ′ such that 0 6= anx′ ∈ f(N).
Then there exists x ∈M such x′ = f(x). Since 0 6= anx′ = anf(x) = f(anx) ∈
f(N) and ker(f) ⊆ N , then 0 6= anx ∈ N which is a weakly quasi n-absorbing
submodule of M . Therefore, an ∈ (N :R M) or an−1x ∈ N . And so anM ⊆ N
or an−1x ∈ N . It follows that anM ′ ⊆ f(N) or an−1f(x) ∈ f(N). Hence,
an ∈ (f(N) :R M ′) or an−1x′ ∈ f(N). Finally, f(N) is a weakly quasi n-
absorbing submodule of M ′, as desired. �

We close this paper by studying about when the intersection of family of
(Nα)α∈I is a weakly quasi n-absorbing submodule.

Theorem 2.26. Consider (Nα)α∈I a chain of weakly quasi n-absorbing sub-
modules of an R-module M . Then N =

⋂
α∈I Nα is a weakly quasi n-absorbing

submodule of M .

Proof. Let 0 6= anx ∈ N for some a ∈ R and x ∈M . Clearly 0 6= anx ∈ Nα for
each α ∈ I. Two cases are then possible:

Case 1 : If an ∈ (Nα :R M) for all α ∈ I, then an ∈
⋂

(Nα :R M) = (
⋂
Nα :R

M) = (N :R M).
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Case 2 : Assume that an 6∈ (Nα′ :R M) for some α′ ∈ I. Then an 6∈
(Nα :R M) for all Nα ⊆ Nα′ . Using the fact that Nα is a weakly quasi n-
absorbing submodule of M for each α ∈ I, then an−1x ∈ Nα for all Nα ⊆ Nα′ .
Consequently, it follows that an−1x ∈ N =

⋂
α∈I Nα.

Finally, N =
⋂
α∈I Nα is a weakly quasi n-absorbing submodule of M , as

desired. �
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