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THE GROWTH OF SOLUTIONS OF COMPLEX

DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENT

HAVING FINITE DEFICIENT VALUE

Guowei Zhang

Abstract. The growth of solutions of second order complex differential
equations f ′′+A(z)f ′+B(z)f = 0 with transcendental entire coefficients

is considered. Assuming that A(z) has a finite deficient value and that

B(z) has either Fabry gaps or a multiply connected Fatou component, it
follows that all solutions are of infinite order of growth.

1. Introduction and main results

Our main purpose is to study the growth of the solutions of the second order
linear complex differential equation

f ′′ +A(z)f ′ +B(z)f = 0,(1.1)

where A(z) and B(z) are entire functions. It’s well known that every solution
of this equation is also entire function. The growth of entire function f shows
by the order ρ(f) and lower order µ(f), which are defined respectively by

ρ(f) = lim sup
r→+∞

log+ T (r, f)

log r
= lim sup

r→+∞

log+ log+M(r, f)

log r
,

µ(f) = lim inf
r→+∞

log+ T (r, f)

log r
= lim inf

r→+∞

log+ log+M(r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function, log+ x = max{log x, 0}
and M(r, f) denotes the maximum modulus of f on the circle |z| = r. Nevan-
linna theory plays an important role in the study of complex differential equa-
tions, its basic results and standard notations, such as T (r, f),m(r, f), N(r, f)
and δ(a, f), can be found in [19,29].
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It’s well known that if B(z) is transcendental and f1, f2 are two linearly
independent solutions of the equation (1.1), then at least one of f1, f2 is of
infinite order, see [17]. However, there exist some equations of form (1.1)
that have a nontrivial solution of finite order. For example, f(z) = ez satisfies
differential equation f ′′+e−zf ′−(e−z+1)f = 0. A natural question is that what
conditions on A(z) and B(z) can guarantee that every solution f(6≡ 0) of the
equation (1.1) is of infinite order? There has been many results in the literature
on this subject, see [17, 19]. For example, let A(z) and B(z) be nonconstant
entire functions, satisfying ρ(A) < ρ(B) (see [13]) or ρ(B) < ρ(A) ≤ 1

2 (see
[16]), then every nontrivial solution f of the equation (1.1) has infinite order.

In this paper, we continue to study the above question and consider the
question by assuming max{ρ(A), ρ(B)} < ∞ in the following theorems. At
first, we consider the case in which one coefficient of the equation (1.1) has
deficient value. Let f be a non-constant meromorphic function in the complex
plane and a be any complex number, the deficiency of a with respect to f(z)
is defined by

δ(a, f) = lim inf
r→∞

m(r, 1
f−a )

T (r, f)
= 1− lim sup

r→∞

N(r, 1
f−a )

T (r, f)
.

If δ(a, f) > 0, then the complex number a is named a deficient value of f(z).
If an entire function f(z) has a finite deficient value, then µ(f) > 1/2, see
[30, Theorem 3.5]. Particularly, if entire coefficient A(z) is of positive order
and has a finite Borel exceptional value a, we have δ(a,A) = 1 by [29, Theorem
2.12]. Moreover, if B(z) has some other properties, there have been some results
about the solution f of (1.1) with infinite order, for example see [8, 11, 21, 22].
We state one of these as following.

Theorem 1.1 ([22, Theorem 1.8]). Let A(z) be an entire function having a
finite Borel exceptional value, and let B(z) be an entire function with Fabry
gaps. Then every nontrivial solution of (1.1) is of infinite order.

For entire function B(z) =
∑∞
n=0 anz

λn with Fabry gaps, it satisfies the gaps

condition λn
n →∞ as n→∞ and it has positive order which was shown in [15,

p. 651], then B(z) is transcendental. In Theorem 1.1 suppose the finite Borel
exceptional value of A(z) is a, as mentioned above we have δ(a,A) = 1 and
A(z) is of positive integer or infinite order by [29, Theorem 2.11]. Furthermore,
we consider the general situation that assume A(z) has a finite deficient value
a, which implies δ(a,A) may be less than 1. In fact, there have been some
results as following.

Theorem 1.2. Let A(z) be a finite order entire function with a finite deficient
value and B(z) be a transcendental entire function, satisfying any one of the
following additional hypotheses:

(1) µ(B) < 1/2, see [28];
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(2) T (r,B) ∼ logM(r,B) as r → ∞ outside a set of finite logarithmic
measure, see [26, Lemma 2.7],

then every nontrivial solution f of the equation (1.1) has infinite order.

Following this idea, we extend the condition of A(z) in Theorem 1.1 to a
general case, that is, A(z) is an entire function with a finite deficient value. In
fact, we get a result as follows.

Theorem 1.3. Let A(z) be an entire function with a finite deficient value, and
let B(z) be an entire function with Fabry gaps. Then every nontrivial solution
of (1.1) is of infinite order.

In the below, in order to explain the assumption of Theorem 1.4 we give
brief introduction of transcendental entire function f having multiply connected
Fatou component. In the complex dynamic theory, see [6] for example, the
complex plane is divided into two sets, Fatou set and Julia set. Fatou set
F(f) of f is where the n-th iteration of f , denoted by fn, form a normal
family. The complement of F(f) in C is called the Julia set J (f) of f . The
set F(f) is completely invariant under f in the sense that z ∈ F(f) if and
only if f(z) ∈ F(f). Therefore, if U is a component of F (f), a so-called Fatou
component, then there exists, for some n = 0, 1, 2, . . ., a Fatou component Un
such that fn(U) ⊂ Un. If, for some p ≥ 1, we have Up = U0 = U , then
we say that U is a periodic component of period p, assuming p to be the
minimal. If Un is not eventually periodic, then U is a wandering domain of f .
Although some entire functions with only simply connected Fatou component,
such as Eremenko-Lyubich class function [9], there are many examples of entire
function with multiply connected Fatou components. The first such function
was constructed by Baker [1], who proved later [3] that this function has a
multiply connected Fatou component that is a wandering domain. Moreover,
Baker showed [2] that this is not a special property of this example: if U is
any multiply connected Fatou component of a transcendental entire function f ,
then U is wandering domain which called Baker wandering domain. It has the
following properties: (1) each Un is bounded and multiply connected; (2) there
exists N ∈ N such that Un and 0 lie in a bounded complementary component
of Un+1 for n ≥ N ; (3) dis(Un, 0)→∞ as n→∞. Therefore, if transcendental
entire function f has a multiply connected Fatou component, then J (f) has
only bounded component.

Theorem 1.4. Let A(z) be an entire function with a finite deficient value,
and B(z) be a transcendental entire function with a multiply connected Fatou
component. Then every nontrivial solution of (1.1) is of infinite order.

As mentioned above if ρ(A) < ρ(B), then every nontrivial solution of (1.1)
is of infinite order. On the contrary, there also have been some studies on
assumption ρ(B) < ρ(A) < ∞ and some other conditions to get that every
nontrivial solutions of (1.1) has infinite order, see [18, 20]. In [23] the authors
replaced ρ(B) < ρ(A) <∞ by µ(B) < µ(A) <∞ and got the following result.
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Theorem 1.5. Suppose A(z) and B(z) are two entire functions with µ(B) <
µ(A) < ∞, and T (r,A) ∼ α logM(r,A) as r → ∞ outside a set of zero upper
logarithmic density. Then every nontrivial solution of (1.1) satisfies

ρ(f) ≥ µ(A)− µ(B)

21(µ(A) + µ(B))
√

2π(1− α)
− 1, α ∈ (0, 1).

If α = 1, then ρ(f) =∞.

Motivated by this result, we obtain the following theorem by changing the
condition on coefficient A(z).

Theorem 1.6. Let A(z) and B(z) be two entire functions with µ(B) < µ(A) <
∞, and A(z) has Fabry gaps. Then every nontrivial solution of (1.1) is of
infinite order.

2. Preliminary lemmas and auxiliary results

The Lebesgue linear measure of a set E ⊂ [0,∞) is m(E) =
∫
E
dt, and the

logarithmic measure of a set F ⊂ [1,∞) is ml(F ) =
∫
F
dt
t . The upper and

lower logarithmic densities of F ⊂ [1,∞) are given by

log densF = lim sup
r→∞

ml(F ∩ [1, r])

log r

and

log densF = lim inf
r→∞

ml(F ∩ [1, r])

log r
,

respectively. We say F has logarithmic density if log dens(F ) = log dens(F ).
The proofs of our results highly rely on the estimation of logarithmic deriva-

tives, which is due to Gundersen [12].

Lemma 2.1 ([12]). Let f be a transcendental meromorphic function of finite
order ρ(f). Let ε > 0 be a given real constant, and let k and j be two integers
such that k > j ≥ 0. Then there exists a set E ⊂ (1,∞) with ml(E) <∞ such
that for all z satisfying |z| 6∈ (E ∪ [0, 1]), we have∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(ρ(f)−1+ε).(2.1)

The following result is a special form of [31, Corollary], in which we set
M(r, f) = max{|f(z)| : |z| = r}, L(r, f) = min{|f(z)| : |z| = r}.
Lemma 2.2 ([31, Corollary 1]). Let f(z) be a transcendental meromorphic
function with at most finitely many poles. If J (f) has only bounded com-
ponents, then for any complex number a, there exist a constant 0 < d < 1
and two sequences {rn} and {Rn} of positive numbers with rn → ∞ and
Rn/rn →∞(n→∞) such that

M(r, f)d ≤ L(r, f), r ∈ G,(2.2)

where G =
⋃∞
n=1{r : rn < r < Rn}.
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Obviously, in the above lemma the set G has infinite logarithmic measure,
but we can not ensure the logarithmic density of G is positive. For the proof
of Theorem 1.4, we need to give a modification of Lemma 2.2. In order to do
this, we state two necessary results as follow.

Lemma 2.3 ([5]). Let U be a domain in the complex plane and f(z) be defined
and analytic in fn(U), (n = 0, 1, . . .) inductively such that H = ∪∞n=0f

n(U) has
at least two finite boundary points in the complex plane. If fnk |U → ∞(k →
∞), then for any compact subset K of H, there exists a positive constant M
such that for all sufficiently large k, we have

|fnk(z1)| ≤ |fnk(z2)|M(2.3)

for all z1, z2 ∈ K.

Lemma 2.4 ([7]). Let f be a transcendental entire function with a multiply
connected wandering domain U . For each z0 ∈ U and each open set D ⊂ U
containing z0, there exists α ∈ (0, 1) such that for sufficiently large n ∈ N,

{z : |fn(z0)|1−α < |z| < |fn(z0)|1+α} ⊂ fn(D) ⊂ Un.(2.4)

Lemma 2.5. Let f(z) be a transcendental entire function. If F(f) has a
multiply connected component, then there exist a constant 0 < d < 1 and a set
G ⊂ (1,+∞) with positive lower logarithmic density such that

M(r, f)d ≤ L(r, f), r ∈ G.(2.5)

Proof. It was shown in [4] that for a transcendental entire function, every mul-
tiply connected component of its Fatou set must be Baker wandering domain.
Then there exists a Baker wandering domain U containing a set D in Lemma
2.4. We have a sequence Dn = fn(D) in ∪∞n=0f

n(D). Set G = ∪∞n=n0
{r :

|fn(z0)|1−α < r < |fn(z0)|1+α} and C(r) = {z : |z| = r}. Obviously, G has
positive lower logarithmic density 2α. For every r ∈ G, we have C(r) ⊂ Dn

for some n and we have a curve γ(r) in D and a positive integer n̂ such that
C(r) = f n̂(γ(r)). Therefore, we have two points w1 and w2 in γ(r) ⊂ D such
that

M(r, f) = max
z∈C(r)

|f(z)| = |f(f n̂(w1))|,(2.6)

L(r, f) = min
z∈C(r)

|f(z)| = |f(f n̂(w2))|.(2.7)

Since D is a compact subset of U and fn(U)→∞(n→∞), by Lemma 2.3 we
have for some constant M > 1

|f n̂+1(w1)| ≤ |f n̂+1(w2)|M .(2.8)

Combining (2.6), (2.7), (2.8), we obtain (2.5) with d = 1/M . �



1500 G. W. ZHANG

Lemma 2.6 ([10, Lemma 1]). Let h(z) be a meromorphic function of finite
order ρ. Given ζ > 0 and 0 < l < 1/2, there exist a positive constant K(ρ, ζ)
and a set Fζ ⊂ [0,+∞) of lower logarithmic density

log densFζ := lim inf
r→∞

∫
Fζ∩[1,∞)

t−1dt

log r
≥ 1− ζ

such that

r

∫
J

∣∣∣∣h′(reiθ)h(reiθ)

∣∣∣∣ dθ < K(ρ, ζ)(l log
1

l
)T (r, h)(2.9)

for all r ∈ Fζ and every interval J ⊂ [0, 2π) of length l.

We state the following lemma in regard to entire function with Fabry gaps.
It can be found in [10, Theorem 1] and [14, Lemma 2.2].

Lemma 2.7 ([10, Theorem 1]). Let B(z) =
∑∞
n=0 anz

λn be an entire function
of finite order with Fabry gaps. Then, for any given ε > 0,

logL(r,B) > (1− ε) logM(r,B)(2.10)

holds outside a set of logarithmic density 0, here L(r,B),M(r,B) are as men-
tioned in Lemma 2.2.

For entire function with a finite deficient value, the following lemma is an
important estimation of its growth in a small sector.

Lemma 2.8. Let A(z) be an entire function with a finite deficient value a.
Then there exist a small interval I ∈ [0, 2π) and a set Fζ ⊂ (1,∞) with lower
logarithmic density at least 1− ζ such that

|A(reiϕ)| ≤ |a|+ 1(2.11)

for r ∈ Fζ and ϕ ∈ I.

Proof. Assume that A(z) has deficiency δ(a,A) = 2δ at a ∈ C. Then from the
definition of deficiency, the proximate function of 1

A−a satisfying m(r, 1
A−a ) >

δT (r,A), so there exists a point zr = reiθr such that

log |A(zr)− a| ≤ −δT (r,A).(2.12)

Set z = reiθ and w = reit, by the integral we obtain

log(A(z)− a)− log(A(zr)− a) =

∫ z

zr

(A(w)− a)′

A(w)− a
dw

= r

∫ θ

θr

(A(reit)− a)′

A(reit)− a
ieitdt.(2.13)

Taking modulus we get

| log(A(z)− a)| ≤ | log(A(zr)− a)|+ r

∫ θ

θr

∣∣∣∣ (A(reit)− a)′

A(reit)− a

∣∣∣∣ dt.(2.14)
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Applying Lemma 2.6 to A− a and taking the principle branch of logarithmic,
we can choose a set Fζ of lower logarithmic density greater than 1 − ζ such
that

log |(A(z)− a)| ≤ log |(A(zr)− a)|+ 4π + r

∫ θ

θr

∣∣∣∣ (A(reit)− a)′

A(reit)− a

∣∣∣∣ dt
≤ (−δ +K(ρ(A), ζ)l log

1

l
)T (r,A− a) + 4π

≤ (−δ +K(ρ(A), ζ)l log
1

l
+ o(1))T (r,A)(2.15)

holds. Therefore, set θ = θr + l, we have

log |(A(reiϕ)− a)| ≤ log |(A(zr)− a)|+ 4π + r

∫ ϕ

θr

∣∣∣∣ (A(reit)− a)′

A(reit)− a

∣∣∣∣ dt
≤ log |(A(zr)− a)|+ 4π + r

∫ θ

θr

∣∣∣∣ (A(reit)− a)′

A(reit)− a

∣∣∣∣ dt
≤ (−δ +K(ρ(A), ζ)l log

1

l
+ o(1))T (r,A)(2.16)

for all z = reiϕ satisfying r ∈ Fζ and ϕ ∈ [θr, θr + l]. Since liml→0+ l log 1
l = 0,

we determine l sufficiently small, then (2.16) implies log |A(reiϕ)−a| ≤ 0, that
is

|A(reiϕ)| ≤ |a|+ 1(2.17)

for r ∈ Fζ , ϕ ∈ [θr, θr + l]. �

The last lemma is a simplified formulation of a result due to Miles and Rossi
[24, Theorem 1], sufficient for our use.

Lemma 2.9. Let f be a nonconstant entire function of finite order. For β ∈
(0, 1) and r > 0, let

Ur =

{
θ ∈ [0, 2π) : r

∣∣∣∣f ′(reiθ)f(reiθ)

∣∣∣∣ ≥ βn(r, 0, f)

}
.

Then for M > 3 there exists a set EM ⊂ [1,∞) with lower logarithmic density
at least 1− 3

M such that

m(Ur) >

(
1− β

7M(ρ+ 1)

)2

, r ∈ EM .

3. Proof of theorems

3.1. Proof Theorem 1.3

Suppose there is a nontrivial solution f of (1.1) with finite order ρ(f), we
shall seek a contradiction. Since A(z) has a finite deficient value a, by Lemma
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2.8 there exist a small interval I ∈ [0, 2π) and a set Fζ ⊂ (1,∞) with lower
logarithmic density at least 1− ζ such that

|A(reiϕ)| ≤ |a|+ 1(3.1)

for r ∈ Fζ and ϕ ∈ I. By Lemma 2.1, there exists a set E1 with finite
logarithmic measure such that∣∣∣∣f (k)(z)f(z)

∣∣∣∣ ≤ |z|2ρ(f), (k = 1, 2)(3.2)

for all r 6∈ E1∪[0, 1]. It’s clear that there exists a set E with positive logarithmic
density such that (2.10) and (3.1) holds simultaneously for r ∈ E and ϕ ∈ I.
Then, combining (2.10), (3.1) with (3.2), for all z = reiϕ satisfying r ∈ E \
(E1 ∪ [0, 1]), ϕ ∈ I and any given ε > 0 we have

M(r,B)1−ε < L(r,B) ≤ |B(reiϕ)| ≤
∣∣∣∣f ′′(reiϕ)

f(reiϕ)

∣∣∣∣+ |A(reiϕ)|
∣∣∣∣f ′(reiϕ)

f(reiϕ)

∣∣∣∣
≤ (2 + |a|)r2ρ(f).(3.3)

Then,

(1− ε)T (r,B) ≤ (1− ε) logM(r,B) ≤ 2ρ(f) log r + log(|a|+ 2)(3.4)

as r ∈ E \ (E1 ∪ [0, 1]), ϕ ∈ I. Since B(z) is transcendental, we get a contra-
diction.

3.2. Proof of Theorem 1.4

We assume that there is a nontrivial solution f of (1.1) with finite order.
By Lemma 2.8, there exist a small interval I ∈ [0, 2π) and a set Fζ ⊂ (1,∞)
with lower logarithmic density at least 1 − ζ such that (3.1) holds for r ∈ Fζ
and ϕ ∈ I. Moreover, by Lemma 2.1 there exists a set E ⊂ (1,∞) with finite
logarithmic measure such that for all z satisfying |z| = r 6∈ E ∪ [0, 1], (3.2)
holds. Since B(z) has a multiply connected Fatou component, by Lemma 2.7
there exist a constant 0 < d < 1 and a set G ⊂ (1,+∞) with positive lower
logarithmic density 2α such that

M(r,B)d ≤ L(r,B), r ∈ G.(3.5)

Since the characteristic function of Fζ and G satisfy, see [27, p. 44],

χFζ∪G(t) = χFζ (t) + χG(t)− χFζ∩G(t),(3.6)

from [25, p. 121] we have

log densFζ + log densG− log dens(Fζ ∩G) ≤ log dens(Fζ ∪G)

≤ 1.(3.7)

Obviously, we have log densFζ ≥ log densFζ ≥ 1−ζ, which implies log dens(Fζ∩
G) > 2α − ζ. Since the constant ζ in Lemma 2.6 ([10, Lemma 1]) can take
any number in (0, 1), then choose ζ sufficiently small such that 2α − ζ > 0.



INFINITE GROWTH, COMPLEX DIFFERENTIAL EQUATIONS 1503

Therefore, the set Fζ ∩G has positive lower logarithmic density, so has infinite
logarithmic measure.

Combining (3.1), (3.2) with (3.5), we have, for z = reiϕ satisfying r ∈
Fζ ∩G \ (E ∪ [0, 1]) and ϕ ∈ I,

M(r,B)d ≤ L(r,B) ≤ |B(z)| ≤
∣∣∣∣f ′′(z)f(z)

∣∣∣∣+ |A(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣
≤ (|a|+ 2)r2ρ(f),(3.8)

where d ∈ (0, 1). Thus,

dT (r,B) ≤ d logM(r,B) ≤ 2ρ(f) log r + log(|a|+ 2)(3.9)

as r ∈ Fζ ∩G\ (E∪ [0, 1]). This is a contradiction since B(z) is transcendental.

3.3. Proof Theorem 1.6

Suppose on the contrary to the assertion that there is a nontrivial solution
f of (1.1) with finite order ρ(f) = ρ. We aim for a contradiction. In view of
(1.1), we have

|A(z)|
∣∣∣∣f ′f
∣∣∣∣ ≤ |B(z)|+

∣∣∣∣f ′′f
∣∣∣∣ .(3.10)

By the definition of lower order, there exists an r0 > 1 such that for all r > r0
and any given ε ∈ (0, µ(A)−µ(B)

2 ), we have

logM(r,A) > rµ(A)− ε2 .(3.11)

Moreover, there exists a sequence {rn} with rn → ∞ as n → ∞ such that for
sufficiently large n, we have

logM(rn, B) < rµ(B)+ε
n .(3.12)

Set

F1 =
⋃
n

[r
µ(B)+ε
µ(A)−ε
n , rn],

then log dens(F1) ≥ µ(A)−µ(B)−2ε
µ(A)−ε . Thus, for all r ∈ F1, combining the above

two inequalities yields

logM(r,B) ≤ logM(rn, B) < rµ(B)+ε
n =

(
r
µ(B)+ε
µ(A)−ε
n

)µ(A)−ε

< rµ(A)−ε.(3.13)

By the argument in [13, p. 426], we know that for any nontrivial solution of
(1.1) it has at least one zero, then n(r, 0, f) ≥ 1 for some r > r0. Therefore,
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by Lemma 2.9, there exist a set F2 ⊂ [1,∞) with lower logarithmic density at

least 1− 3
M and a set Ur ⊂ [0, 2π) with m(Ur) >

(
1−β

7M(ρ+1)

)2
such that

r

∣∣∣∣f ′(reiθ)f(reiθ)

∣∣∣∣ ≥ βn(r, 0, f) > β(3.14)

for r ∈ F2 and θ ∈ Ur, where β ∈ (0, 1). In addition, by Lemma 2.7 there exists
a set F3 ∈ (1,∞) with logarithmic density 1 such that

logL(r,A) > (1− ε) logM(r,A)(3.15)

for any given ε > 0 and r ∈ F3.
Finally, by Lemma 2.1, there exists a set F4 ⊂ (1,∞) with finite logarithmic

measure such that (3.2) holds for all z satisfying |z| = r 6∈ F4 ∪ [0, 1]. Denote
F c2 and F c3 the complement set of F2 and F3 in (0,∞), respectively, the set
F0 = F1 ∩ F2 ∩ F3 satisfies

log densF0 ≥ log densF1 − log densF c2 − log densF c3

= log densF1 − (1− log densF2)

≥ µ(A)− µ(B)− 2ε

µ(A)− ε
− 3

M
> 0(3.16)

if we take M = 3(µ(A)+µ(B))
µ(A)−µ(B)−2ε > 3 in Lemma 2.9. For r ∈ F0 \ (F4 ∪ [0, 1] and

θ ∈ Ur, substituting (3.11), (3.13), (3.14), and (3.15) into (3.10), we have

β exp{(1− ε)rµ(A)− ε2 }
r

≤ βM(r,A)1−ε

r
≤ βL(r,A)

r
≤ |A(reiθ)|

∣∣∣∣f ′(reiθ)f(reiθ)

∣∣∣∣
≤ |B(reiθ)|+

∣∣∣∣f ′′(reiθ)f(reiθ)

∣∣∣∣ ≤M(r,B) + r2ρ(f)

≤ exp{rµ(A)−ε}+ r2ρ(f).(3.17)

Obviously, this is a contradiction for sufficiently large r. Then we complete the
proof.
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