DOI QR코드

DOI QR Code

Effective Interfacial Trap Passivation with Organic Dye Molecule to Enhance Efficiency and Light Soaking Stability in Polymer Solar Cells

  • Rasool, Shafket (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Zhou, Haoran (Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University) ;
  • Vu, Doan Van (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Haris, Muhammad (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Song, Chang Eun (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Hwan Kyu (Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University) ;
  • Shin, Won Suk (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
  • 투고 : 2021.12.07
  • 심사 : 2021.12.15
  • 발행 : 2021.12.31

초록

Light soaking (LS) stability in polymer solar cells (PSCs) has always been a challenge to achieve due to unstable photoactive layer-electrode interface. Especially, the electron transport layer (ETL) and photoactive layer interface limits the LS stability of PSCs. Herein, we have modified the most commonly used and robust zinc oxide (ZnO) ETL-interface using an organic dye molecule and a co-adsorbent. Power conversion efficiencies have been slightly improved but when these PSCs were subjected to long term LS stability chamber, equipped with heat and humidity (45℃ and 85% relative humidity), an outstanding stability in the case of ZnO/dye+co-adsorbent ETL containing devices have been achieved. The enhanced LS stability occurred due to the suppressed interfacial defects and robust contact between the ZnO and photoactive layer. Current density as well as fill factors have been retained after LS with the modified ETL as compared to un-modified ETL, owing to their higher charge collection efficiencies which originated from higher electron mobilities. Moreover, the existence of less traps (as observed from light intensity-open circuit voltage measurements and dark currents at -2V) are also found to be one of the reasons for enhanced LS stability in the current study. We conclude that the mitigation ETL-surface traps using an organic dye with a co-adsorbent is an effective and robust approach to enhance the LS stability in PSCs.

키워드

과제정보

This work was supported by the Korean government (the Ministry of Trade, Industry & Energy, Republic of Korea) through the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP-20204030200070) and by the Korea Research Institute of Chemical Technology (KRICT) of the Republic of Korea (No. KS2022-00).

참고문헌

  1. Rasool, S., Hoang, Q. V., Vu, D. V., Bui, T.T.T., Jin, S.-M., Ho, T.T., Song, C. E., Lee, H. K., Lee, S. K., Lee, J.-C., Moon, S.-J., Lee, E., Shin, W. S., "High-efficiency non-halogenated solvent processable polymer/PCBM solar cells via fluorination-enabled optimized nanoscale morphology," J. Mater. Chem. A, 7, 24992-25002 (2019). https://doi.org/10.1039/c9ta08960h
  2. Kawashima, K., Fukuhara, T., Suda, Y., Suzuki, Y., Koganezawa, T., Yoshida, H., Ohkita, H., Osaka I., Takimiya, K., "Implication of fluorine atom on electronic properties, ordering structures, and photovoltaic performance in naphthobisthiadiazole-based semiconducting polymers," J. Am. Chem. Soc, 138(32), 10265-10275 (2016). https://doi.org/10.1021/jacs.6b05418
  3. Saito, M., Fukuhara, T., Kamimura, S., Ichikawa, H., Yoshida, H., Koganezawa, T., Ie, Y., Tamai, Y., Kim, H. D., Ohkita, H., Osaka, I., "Impact of Noncovalent Sulfur-Fluorine Interaction Position on Properties, Structures, and Photovoltaic Performance in Naphthobisthiadiazole-Based Semiconducting Polymers," Adv. Energy Mater, 10, 1903278 (2020). https://doi.org/10.1002/aenm.201903278
  4. Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade H., Yan, H., "Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells," Nat. Commun, 5, 1-8 (2014).
  5. Yu, G., Gao, J., Hummelen, J. C., Wudl F., Heeger, A. J., "Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science, 270, 1789-1791 (1995). https://doi.org/10.1126/science.270.5243.1789
  6. Zhao, J., Li, Y., Yang, G., Jiang, K., Lin, H., Ade, H., Ma, W. Yan, H., "Efficient organic solar cells processed from hydrocarbon solvents," Nat. Energy, 1, 1-7 (2016).
  7. Vohra, V., Kawashima, K., Kakara, T., Koganezawa, T., Osaka, I., Takimiyam, K. Murata, H., "Efficient inverted polymer solar cells employing favourable molecular orientation," Nat. Photonics, 9, 403-408 (2015). https://doi.org/10.1038/nphoton.2015.84
  8. Hu, H., Jiang, K., Yang, G., Liu, J., Li, Z., Lin, H., Liu, Y., Zhao, J., Zhang, J., Huang, F., Qu, Y., Ma, W. Yan, H., "Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells," J. Am. Chem. Soc, 137, 14149-14157 (2015). https://doi.org/10.1021/jacs.5b08556
  9. Ko, S. J., Hoang, Q. V., Song, C. E., Uddin, M. A., Lim, E., Park, S. Y., Lee, B. H., Song, S., Moon, S. J., Hwang, S., Morin, P. O., Leclerc, M., Su, G. M., Chabinyc, M. L., Woo, H. Y., Shin, W. S. Kim, J. Y. "High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole," Energy Environ. Sci, 10, 1443-1455 (2017). https://doi.org/10.1039/c6ee03051c
  10. Jo, J. W., Jung, J. W., Jung, E. H., Ahn, H., Shin, T. J. Jo, W. H., "Fluorination on both D and A units in D-A type conjugated copolymers based on difluorobithiophene and benzothiadiazole for highly efficient polymer solar cells," Energy Environ. Sci, 8, 2427-2434 (2015). https://doi.org/10.1039/C5EE00855G
  11. Speller, E. M., Clarke, A. J., Aristidou, N., Wyatt, M. F., Francas, L., Fish, G., Cha, H., Lee, H. K. H., Luke, J., Wadsworth, A., Evans, A. D., McCulloch, I., Kim, J. S., Haque, S. A., Durrant, J. R., Dimitrov, S. D., Tsoi, W. C. Li, Z., "Toward improved environmental stability of polymer: fullerene and polymer: nonfullerene organic solar cells: a common energetic origin of light-and oxygen-induced degradation," ACS Energy Lett, 4, 846-852 (2019). https://doi.org/10.1021/acsenergylett.9b00109
  12. Fraga Dominguez, I., Distler, A. Luer, L., "Stability of organic solar cells: The influence of nanostructured carbon materials," Adv. Energy Mater, 7, 1601320 (2017). https://doi.org/10.1002/aenm.201601320
  13. Duan, L. Uddin, A., "Progress in stability of organic solar cells," Adv. Sci, 7, 1903259 (2020). https://doi.org/10.1002/advs.201903259
  14. Kim, T., Younts, R., Lee, W., Lee, S., Gundogdu, K., Kim, B. J., "Impact of the photo-induced degradation of electron acceptors on the photophysics, charge transport and device performance of all-polymer and fullerene-polymer solar cells," J. Mater. Chem. A, 5, 22170-22179 (2017). https://doi.org/10.1039/C7TA07535A
  15. Ahmad, J., Bazaka, K., Anderson, L. J., White, R. D., Jacob, M. V., "Materials and methods for encapsulation of OPV: A review," Renew. Sustain Energy Rev, 27, 104-117 (2013). https://doi.org/10.1016/j.rser.2013.06.027
  16. Uddin, A., Upama, M. B., Yi, H., Duan, L., "Encapsulation of organic and perovskite solar cells: A review," Coatings, 9(2), 65 (2019). https://doi.org/10.3390/coatings9020065
  17. Weerasinghe, H. C., Vak, D., Robotham, B., Fell, C. J., Jones, D. Scully, A. D., "New barrier encapsulation and lifetime assessment of printed organic photovoltaic modules," Sol. Energy Mater. Sol. Cells, 155, 108-116 (2016). https://doi.org/10.1016/j.solmat.2016.04.051
  18. Kesters, J., Verstappen, P., Raymakers, J., Vanormelingen, W., Drijkoningen, J., D'Haen, J., Manca, J., Lutsen, L., Vanderzande, D. Maes, W., "Enhanced organic solar cell stability by polymer (PCPDTBT) side chain functionalization," Chem. Mater, 27(4), 1332-1341 (2015). https://doi.org/10.1021/cm504391k
  19. Jorgensen, M., Norrman, K., Gevorgyan, S. A., Tromholt, T., Andreasen, B. Krebs, F. C. "Stability of polymer solar cells," Adv. Mater, 24, 580-612 (2012). https://doi.org/10.1002/adma.201104187
  20. Polydorou, E., Sakellis, I., Soultati, A., Kaltzoglou, A., Papadopoulos, T. A., Briscoe, J., Tsikritzis, D., Fakis, M., Palilis, L. C., Kennou, S., Argitis, P., Falaras, P., Davazoglou, D., Vasilopoulou, M., "Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of hydrogen-doped zinc oxide as electron extraction material," Nano Energy, 34, 500-514 (2017). https://doi.org/10.1016/j.nanoen.2017.02.047
  21. Zimmermann, B., Wurfel, U., Niggemann, M., "Longterm stability of efficient inverted P3HT: PCBM solar cells," Sol. Energy Mater. Sol. Cells, 93, 491-496 (2009). https://doi.org/10.1016/j.solmat.2008.12.022
  22. Gusain, A., Faria, R. M., Miranda, P. B., "Polymer solar cells -Interfacial processes related to performance issues," Front. Chem, 7, 61 (2019). https://doi.org/10.3389/fchem.2019.00061
  23. Gevorgyan, S. A., Espinosa, N., Ciammaruchi, L., Roth, B., Livi, F., Tsopanidis, S., Zufle, S., Queiros, S., Gregori, A., Benatto, G. A. dos R., Corazza, M., Madsen, M. V., Hosel, M., Beliatis, M. J., Larsen-Olsen, T. T., Pastorelli, F., Castro, A., Mingorance, A., Lenzi, V., Fluhr, D., Roesch, R., Maria Duarte Ramos, M., Savva, A., Hoppe, H., Marques, L. S. A., Burgues, I., Georgiou, E., Serrano-Lujan, L., Krebs, F. C., "Baselines for lifetime of organic solar cells," Adv. Energy Mater, 6, 1600910 (2016). https://doi.org/10.1002/aenm.201600910
  24. Song, J., Tyagi, P., An, K. Park, M., Jung, H., Ahn, N., Choi, M., Lee, D., Lee, C., "Degradation of electrical characteristics in low-bandgap polymer solar cells associated with light-induced aging," Org. Electron, 81, 105686 (2020). https://doi.org/10.1016/j.orgel.2020.105686
  25. Rasool, S., Vu, D. V., Song, C. E., Lee, H. K., Lee, S. K., Lee, J.-C., Moon, S.-J., Shin, W. S., "Room temperature processed highly efficient large-area polymer solar cells achieved with molecular engineering of copolymers," Adv. Energy Mater, 9(21), 1900168 (2019). https://doi.org/10.1002/aenm.201900168
  26. Liu, Q., Toudert, J., Liu, F., Mantilla-Perez, P., Bajo, M. M., Russell, T. P., Martorell, J., "High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane," Adv. Energy Mater, 7, 1700739 (2017). https://doi.org/10.1002/aenm.201700739
  27. Rasool, S., Vu, D. V., Lee, H. K., Lee, S. K., Lee, J.-C., Moon, S.-J., So, W. W., Song, C. E., Shin, W. S., "Enhanced photostability in polymer solar cells achieved with modified electron transport layer," Thin Solid Films, 669, 42-48 (2019). https://doi.org/10.1016/j.tsf.2018.09.040
  28. Zeng, H., Zhu, X., Liang, Y., Guo, X., "Interfacial layer engineering for performance enhancement in polymer solar cells" Polymers, 7(2), 333-372 (2015). https://doi.org/10.3390/polym7020333
  29. Song, C. E., Ryu, K. Y., Hong, S. J., Bathula, C., Lee, S. K., Shin, W. S., Lee, J.-C., Choi, S. K., Kim, J. H., Moon, S.-J., "Enhanced Performance in Inverted Polymer Solar Cells with D-π-A-Type Molecular Dye Incorporated on ZnO Buffer Layer," ChemSusChem, 6(8), 1445-1454 (2013). https://doi.org/10.1002/cssc.201300240
  30. Wang, F., Tan, Z., Li, Y., "Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells," Energy Environ. Sci, 8, 1059-1091, (2015) https://doi.org/10.1039/C4EE03802A
  31. Liang, Z., Zhang, Q., Jiang, L., Cao, G., "ZnO cathode buffer layers for inverted polymer solar cells," Energy Environ. Sci., 8(12), 3442-3476 (2015). https://doi.org/10.1039/C5EE02510A
  32. Walker, B., Choi, H., Kim, J. Y., "Interfacial engineering for highly efficient organic solar cells," Curr. Appl. Phys, 17(3), 370-391 (2017). https://doi.org/10.1016/j.cap.2016.12.007
  33. Mahmood, A., Hu, J. Y., Xiao, B., Tang, A., Wang, X., Zhou, E., "Recent progress in porphyrin-based materials for organic solar cells," J. Mater. Chem. A, 6, 16769-16797 (2018). https://doi.org/10.1039/C8TA06392C
  34. Jeong, M., Jin, H. C., Lee, J. H., Moon, D. K., Kim, J. H., "Effect of interface modification in polymer solar cells: An in-depth investigation of the structural variation of organic dye for interlayer material," Dye. Pigment., 173, 107927 (2020). https://doi.org/10.1016/j.dyepig.2019.107927
  35. Kang, M. S., Kang, S. H., Kim, S. G., Choi, I. T., Ryu, J. H., Ju, M. J., Cho, D., Lee, J. Y., Kim, H. K., "Novel D-π-A structured Zn (ii)-porphyrin dyes containing a bis (3, 3-dimethylfluorenyl) amine moiety for dye-sensitised solar cells," Chem. Commun, 48(75), 9349-9351 (2012). https://doi.org/10.1039/c2cc31384g
  36. Tountas, M., Verykios, A., Polydorou, E., Kaltzoglou, A., Soultati, A., Balis, N., Angaridis, P. A., Papadakis, M., Nikolaou, V., Auras, F., Palilis, L. C., Tsikritzis, D., Evangelou, E. K., Gardelis, S., Koutsoureli, M., Papaioannou, G., Petsalakis, I. D., Kennou, S., Davazoglou, D., Argitis, P., Falaras, P., Coutsolelos, A. G., Vasilopoulou, M., "Engineering of porphyrin molecules for use as effective cathode interfacial modifiers in organic solar cells of enhanced efficiency and stability," ACS Appl. Mater. Interfaces, 10, 20728-20739 (2018). https://doi.org/10.1021/acsami.8b03061
  37. Kang, S. H., Jeong, M. J., Eom, Y. K., Choi, I. T., Kwon, S. M., Yoo, Y., Kim, J., Kwon, J., Park, J. H., Kim, H. K., "Porphyrin Sensitizers with Donor Structural Engineering for Superior Performance Dye-Sensitized Solar Cells and Tandem Solar Cells for Water Splitting Applications," Adv. Energy Mater, 7, 1602117 (2017). https://doi.org/10.1002/aenm.201602117
  38. Choi, I. T., Ju, M. J., Kang, S. H., Kang, M. S., You, B. S., Hong, J. Y., Eom, Y. K., Song, S. H., Kim, H. K., "Structural effect of carbazole-based coadsorbents on the photovoltaic performance of organic dye-sensitized solar cells," J. Mater. Chem. A, 1, 9114-9121 (2013). https://doi.org/10.1039/c3ta11508a
  39. Zhou, H., Ji, J.-M., Kang, S. H., Kim, M. S., Lee, H. S., Kim, C. H., Kim, H. K., "Molecular design and synthesis of D-π-A structured porphyrin dyes with various acceptor units for dye-sensitized solar cells," J. Mater. Chem. C, 7, 2843-2852 (2019). https://doi.org/10.1039/c8tc05283b
  40. Kyaw, A. K. K., Wang, D. H., Wynands, D., Zhang, J., Nguyen, T. Q., Bazan, G. C., Heeger, A. J. "Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells," Nano Lett, 13, 3796 -3801 (2013). https://doi.org/10.1021/nl401758g
  41. Aygul, U., Batchelor, D., Dettinger, U., Yilmaz, S., Allard, S., Scherf, U., Peisert, H., Chasse, T., "Molecular orientation in polymer films for organic solar cells studied by NEXAFS," J. Phys. Chem. C, 116, 4870-4874 (2012). https://doi.org/10.1021/jp205653n
  42. Gkini, K., Verykios, A., Balis, N., Kaltzoglou, A., Papadakis, M., Adamis, K. S., Armadorou, K.-K., Soultati, A., Drivas, C., Gardelis, S., Petsalakis, I. D., Palilis, L. C., Fakharuddin, A., Haider, M. I., Bao, X., Kennou, S., Argitis, P., S.-Mende, L., Coutsolelos, A. G., Falaras, P., Vasilopoulou, M., "Enhanced Organic and Perovskite Solar Cell Performance through Modification of the Electron-Selective Contact with a Bodipy-Porphyrin Dyad," ACS. Appl. Mater. Interfaces, 12(1), 1120-1131 (2020) https://doi.org/10.1021/acsami.9b17580