A WEIERSTRASS SEMIGROUP AT A GENERALIZED FLEX ON A PLANE CURVE

Seon Jeong Kim ${ }^{\text {a }}$ and Eunju Kang ${ }^{\text {b,* }}$

Abstract

We consider a Weierstrass semigroup at a generalized flex on a smooth plane curve. We find the candidates of a Weierstrass semigroup at a 2-flex of higher multiplicity on a smooth plane curve of degree $d \geq 5$, and give some examples to show the existence of them.

1. Introduction and Preliminaries

Let C be a smooth complex projective plane curve of degree $d \geq 4$. Let P be a point on C. We divide the lines on the plane into three types according to the intersection multiplicity at P :
(1) $I\left(C \cap \ell_{0}, P\right)=0$;
(2) $I\left(C \cap \ell_{1}, P\right)=1$;
(3) $I\left(C \cap \ell_{2}, P\right) \geq 2$;
where $I(C \cap \ell, P)$ means the intersection multiplicity of C and ℓ at P. We call ℓ_{2} the tangent line to C at P and denote it by $T_{P} C$. If $I\left(C \cap T_{P} C, P\right)>2$, then we call P the inflection point or a flex on C. One can generalize the notion of this concept by replacing the lines by curves of some given degree m. At each point P, for each natural number $m<d$, there exists a curve F_{m} of degree m which have the highest order of contact with C. We call such a curve F_{m} as an osculating curve of degree m at P to C. Note that an osculating curve F_{m} need not be irreducible. We are interested in the case that F_{m} is irreducible. The point P on C is called an m-flex if F_{m} is irreducible and $I\left(C \cap F_{m}, P\right)>\frac{m(m+3)}{2}$ where F_{m} is an osculating curve of

[^0]degree m. Note that the number $\frac{m(m+3)}{2}$ is the dimension of the system of curves of degree m. Obviously, a 1 -flex means a flex in our notation.

In this paper, we consider a Weierstrass semigroup at 2-flexes, which is also known as sextactic points.

The following are well known;
Lemma 1.1. On a smooth plane curve of degree $d \geq 4$, the canonical series is cut out by the system of all curves of degree $d-3$.

Lemma 1.2 ([5], Bertini's theorem). The generic element of a linear system is smooth away from the base locus of the system.

Lemma 1.3 ([2], Bezout's theorem). Let C_{m} and C_{n} be plane curves of degree m and n, respectively. If they have no common component, then we have

$$
\sum_{P \in C_{m} \cap C_{n}} I\left(C_{m} \cap C_{n}\right)=m n .
$$

Lemma 1.4 ([4], Namba's lemma). Let C_{1}, C_{2} and C be three plane curves, and let P be a smooth point on C. If $I\left(C \cap C_{1}, P\right) \geq m$ and $I\left(C \cap C_{2}, P\right) \geq m$, then $I\left(C_{1} \cap C_{2}, P\right) \geq m$.

Corollary 1.5. Let C be a plane curve and P a smooth point on C. Let C_{1} and C_{2} be plane curves defined by the polynomial h_{1} and h_{2}, respectively. If $\min \{I(C \cap$ $\left.\left.C_{1}, P\right), I\left(C \cap C_{2}, P\right)\right\}>\left(\operatorname{deg} h_{1}\right)\left(\operatorname{deg} h_{2}\right)$ and h_{2} is irreducible, then h_{1} is a multiple of h_{2}.

Proof. By Namba's lemma, $I\left(C_{1} \cap C_{2}, P\right) \geq \min \left\{I\left(C \cap C_{1}, P\right), I\left(C \cap C_{2}, P\right)\right\}>$ ($\left.\operatorname{deg} h_{1}\right)\left(\operatorname{deg} h_{2}\right)$. By Bezout's theorem, C_{1} and C_{2} have a common component. Since C_{2} is irreducible, C_{2} is the common component of them.

For a point P on a smooth curve C of genus g, P is a Weierstrass point if the gap sequence $G_{P}=\left\{n \in \mathbb{N}_{0} \mid\right.$ there exists a canonical divisor K with $I(C \cap K, P)=$ $n-1\}$ is different from $\{1,2 \longrightarrow g\}([1])$. We call the sequence $\{I(C \cap K, P) \mid$ K is a canonical divisor of $C\}$ as an order sequence of canonical divisors at P. Thus P is a Weierstrass point if the order sequence of canonical divisors at P is not $\{0,1 \longrightarrow g-1\}$. Recall that there are only finite number of Weierstrass points on C, which means that the order sequence of canonical divisors at a point is exactly $\{0,1 \longrightarrow g-1\}$ except for a finite number of points, i.e., Weierstrass points. For a
smooth plane curve C of degree d, by Lemma 1.1, the order sequence of canonical divisors at P is the set $\left\{I\left(C \cap f_{d-3}, P\right) \mid f_{d-3}\right.$ is a polynomial of degree $\left.d-3\right\}$.

2. A 2-flex which is a Weierstrass Point

Let C be a smooth plane curve of degree $d \geq 4$. For each natural number $1 \leq k \leq d-1$, the number $i_{k}:=i_{k}(P)$ means the number $I\left(C \cap F_{k}, P\right)$ where F_{k} is the osculating curve of degree k at P to C.

Lemma 2.1. Let C be a smooth plane curve of degree $d \geq 4$ and P a 2-flex on C. Then $i_{1}=2$ and $i_{2}>5$.

Proof. Since P is a 2-flex, the osculating conic F_{2} at P to C is irreducible and $i_{2}=I\left(C \cap F_{2}, P\right)>5$. Let ℓ_{2} be the tangent line to C at P. Then $I\left(C \cap \ell_{2}, P\right) \geq 2$. If $I\left(C \cap \ell_{2}, P\right) \geq 3$, then $I\left(F_{2} \cap \ell_{2}, P\right) \geq 3>\left(\operatorname{deg} F_{2}\right)\left(\operatorname{deg} \ell_{2}\right), F_{2}$ contains ℓ_{2} as a component, which is a contradiction since F_{2} is an irreducible conic. Thus $i_{1}=I\left(C \cap \ell_{2}, P\right)=2$.

We are interested in a 2 -flex point P which is a Weierstrass point.
If $d=4$, then the genus of C is 3 and the lines cut out the canonical series whose order sequence at P is $\{0,1,2\}$. Thus P is not a Weierstrass point. Thus we consider only $d \geq 5$.

Remark 2.2. If $d \geq 5$ and $m=2$ then F_{2} is unique. If F_{2} and G_{2} are two different osculating conics to C at P then $\min \left\{I\left(C \cap F_{2}, P\right), I\left(C \cap G_{2}, P\right)\right\}>5$ so $I\left(F_{2} \cap G_{2}, P\right)>5$ by Nambs's lemma. But $I\left(F_{2} \cap G_{2}, P\right) \leq 4$ by Bertini's theorem, which is a contradiction.

Theorem 2.3. Let C be a smooth plane curve of degree $d \geq 5$ and P a 2-flex on C. If $i_{2}(P)=I\left(C \cap F_{2}, P\right) \geq 2\left\lfloor\frac{d}{2}\right\rfloor+2$ for an irreducible conic F_{2}, then P is a Weierstrass point of C.

Proof. It suffices to show that there exists a polynomial f_{d-3} such that $I(C \cap$ $\left.f_{d-3}, P\right) \geq g=\frac{(d-1)(d-2)}{2}$.

When d is odd, we let $d=2 k+1, k \geq 2$. Since $d-3=2(k-1)$, the degree of F_{2}^{k-1} is a polynomial of degree $d-3$. We have

$$
I\left(C \cap F_{2}^{k-1}, P\right) \geq(k-1)\left(2\left\lfloor\frac{d}{2}\right\rfloor+2\right)=\frac{d-3}{2}(d+1) \geq g
$$

When d is even, we let $d=2 k, k \geq 3$. Since $d-3=2(k-2)+1$, the degree of $F_{2}^{k-2} \ell_{2}$ is a polynomial of degree $d-3$, where ℓ_{2} is the tangent line to C at P. We have

$$
I\left(C \cap F_{2}^{k-2} \ell_{2}, P\right) \geq(k-2)\left(2\left\lfloor\frac{d}{2}\right\rfloor+2\right)+2=\left(\frac{d}{2}-2\right)(d+2)+2 \geq g,
$$

since $d \geq 6$ for even d.
Thus P is a Weierstrass point in both cases.
In next theorem, we give the order sequence at P when $i_{2}(P)$ is a high value, i.e., $i_{2}(P) \geq 2(d-3)+1$.

Theorem 2.4. Let C be a smooth plane curve of degree $d \geq 5$ and P a 2-flex point on C. If $i_{2}(P) \geq 2(d-3)+1$, then the order sequences at P is

$$
\bigcup_{t \alpha \leq \frac{d-3}{2}}\left\{\alpha i_{2} \longrightarrow \alpha i_{2}+2(d-2 \alpha-3)\right\} .
$$

Moreover, such a curve C and a point $P \in C$ exist, indeed the following curve and the point P satisfy the conditions.
$C_{d}: \lambda_{1}\left(y-x^{2}\right)+\lambda_{2}\left(y-x^{2}\right)\left(x^{d-2}+y^{d-2}\right)+\lambda_{3} y^{d}+\lambda_{4} x^{i_{2}-2\left\lfloor\frac{i_{2}}{2}\right\rfloor} y^{\left\lfloor\frac{i_{2}}{2}\right\rfloor}$ and $P=(0,0)$.
Proof. Note that the canonical series is cut out by the curves of degree $d-3$. First, we obtain the orders at P using polynomials of the form $F_{2}^{\alpha} \ell_{0}^{\beta_{0}} \ell_{1}^{\beta_{1}} \ell_{2}^{\beta_{2}}$ with $2 \alpha+$ $\beta_{0}+\beta_{1}+\beta_{2}=d-3$. Here ℓ_{2} is the tangent line at P to C, ℓ_{0} is any line not passing through P, and ℓ_{1} is any line, distinct from ℓ_{2}, passing through P. We have $I\left(F_{2}^{\alpha} \ell_{0}^{\beta_{0}} \ell_{1}^{\beta_{1}} \ell_{2}^{\beta_{2}} \cap C, P\right)=\alpha i_{2}+\beta_{1}+2 \beta_{2}$. For fixed $\alpha, 0 \leq \alpha \leq \frac{d-3}{2}$, we obtain $\left\{I\left(F_{2}^{\alpha} \ell_{0}^{\beta_{0}} \ell_{1}^{\beta_{1}} \ell_{2}^{\beta_{2}} \cap C, P\right) \mid \beta_{0}+\beta_{1}+\beta_{2}=d-3-2 \alpha\right\}=\left\{\alpha i_{2} \longrightarrow \alpha i_{2}+2(d-3-2 \alpha)\right\}$.

Since $i_{2}(P) \geq 2(d-3)+1$, we can check that

$$
\bigcup_{0 \leq \alpha \leq \frac{d-3}{2}}\left\{\alpha i_{2} \longrightarrow \alpha i_{2}+2(d-3-2 \alpha)\right\}
$$

is the disjoint union. Hence the cardinality of it is

$$
\sum_{0 \leq \alpha \leq \frac{d-3}{2}}(2(d-3-2 \alpha)+1)=\frac{(d-1)(d-2)}{2}=g
$$

where g is the genus of C. Thus it is exactly the order sequence of the point P.
Since the order sequence is completely determined by the values $i_{1}=2$ and $i_{2} \geq 2(d-3)+1$, it suffices to find a smooth curve of degree d admitting such values. In fact, by the Bertini's theorem, C_{d} is smooth for general nonzero λ_{i} 's. If we let
$F_{2}=y-x^{2}$, then F_{2} is the osculating conic and $I\left(F_{2} \cap C_{d}, P\right)=i_{2}$. Thus C_{d} is a desired curve.

3. At a 2-flex of Order of Contact $2(d-3)$

In the Theorem 2.4, if $i_{2}(P) \leq 2(d-3)$, then we check that $\bigcup_{0 \leq \alpha \leq \frac{d-3}{2}}\left\{\alpha i_{2} \longrightarrow\right.$ $\left.\alpha i_{2}+2(d-2 \alpha-3)\right\}$ is not a disjoint union, by counting the elements of sets. So the number of orders at P appeared in the union is less than the genus g of C. Then we must find more orders at P not appeared in the union.

In this section, we consider the case $i_{2}(P)=2(d-3)$. In this case, the cardinality of the union is exactly $g-1$ because the last element $2(d-3)$ of the first set and the first element i_{2} in the second set are coincide. Thus we must find one more order at P.

For $d=5,2(d-3)=4$ can not be i_{2} since $i_{2}>5$.
For $d=6$, we have $i_{2}=2(d-3)=6$. From [3], we obtain the order sequences $\{0 \longrightarrow 8\} \cup\{r\}$ with $r \in\{10 \longrightarrow 16\} \cup\{18\}$. Here $r=i_{3}$. Moreover, they proved that i_{3} can not be 17 .

So we deal with the cases for $d=7,8$ and 9 in this section.
3.1. On a curve of degree 7 Let $d=7$ and $i_{2}=2(d-3)=8$. In this case the orders determined by lines and the power of osculating conic are

$$
\{0 \longrightarrow 8\} \cup\{8 \longrightarrow 12\} \cup\{16\}=\{0 \longrightarrow 12\} \cup\{16\}
$$

and its cardinality is $g-1=14$. Hence we need to find one more order.
Lemma 3.1. We have $i_{1}=2, i_{3}=10$, and $i_{4} \geq 16$.
Proof. By Lemma 2.1, $i_{1}=2$.
Let ℓ_{2} be the tangent line to C at P. Since $I\left(C \cap F_{2} \ell_{2}, P\right)=10$, we have $i_{3} \geq 10$. Suppose that $i_{3}>10$ and let f_{3} be a cubic such that $I\left(C \cap f_{3}, P\right)=i_{3}>10$. By Corollary 1.5, $f_{3}=F_{2} \ell$ for some line ℓ. Then $I\left(C \cap f_{3}, P\right) \leq 10$ which is a contradiction. Thus $i_{3}=10$.

Since $I\left(C \cap F_{2}^{2}, P\right)=16$, we have $i_{4} \geq 16$.
Remark 3.2. Let f_{4} be a quartic such that $i_{4}=I\left(C \cap f_{4}, P\right)$. By Namba's lemma, we have $I\left(f_{4} \cap F_{2}, P\right)=8=\left(\operatorname{deg} f_{4}\right)\left(\operatorname{deg} F_{2}\right)$. Here we can not apply Corollary 1.5, i.e., we can not say that F_{2} is a component of f_{4}.

Lemma 3.3. The order sequence at P is $\{0 \longrightarrow 12\} \cup\{16\} \cup\{r\}$ for some $r \in$ $\{13,14,15\} \cup\{17 \longrightarrow 28\}$. Moreover, such r is attained by an irreducible polynomial of degree 4 .

Proof. Since the degree of canonical divisor is $2 g-2=28$, any order of canonical divisor at P is in the set $\{0 \longrightarrow 28\}$. Thus one more order r is an element in the set $\{13,14,15\} \cup\{17 \longrightarrow 28\}$. Let the divisor $r P$ be cut out by a curve f. If $\operatorname{deg} f \leq 3$, then $I(f \cap C, P)=r \geq 10$. Namba's lemma implies that $I\left(f \cap F_{2}, P\right) \geq 8$, which is bigger than $(\operatorname{deg} f)\left(\operatorname{deg} F_{2}\right) \leq 6$. By Bezout's theorem, and that f is a multiple of F_{2}, say $f=F_{2} h$ with $\operatorname{deg} h \leq 1$. Then $I(h \cap C, P)=r-8 \geq 5$, which is a contradiction. Thus the degree of f is 4 since any canonical divisor is cut out by a curve of degree 4 . We can also prove that f is irreducible. Indeed, if f is reducible, then f is factored into polynomials of lower degree than 4 . If f is factored into four lines, then $0 \leq I(C \cap f, P) \leq 8$. If f is factored into one line and a cubic, then $I(C \cap f, P) \leq 12$. If f is factored into two lines and a conic, then $I(C \cap f, P) \leq 12$. If f is factored into two conics, then $I(C \cap f, P)=16$ for the case $f=F_{2}^{2}$, and $I(C \cap f, P) \leq 12$ for the case $f=F_{2} f_{2}$, where f_{2} is a conic different from F_{2}. Note that $I\left(C \cap f_{2}, P\right) \leq 4$ because $I\left(F_{2} \cap f_{2}, P\right) \leq 4=\left(\operatorname{deg} F_{2}\right)\left(\operatorname{deg} f_{2}\right)$ by Bezout's theorem.

Lemma 3.4. There is no smooth plane curve of degree 7 with a point at which the order sequence is $\{0 \longrightarrow 12\} \cup\{16\} \cup\{r\}$ with $27 \leq r \leq 28$.

Proof. Suppose that such a curve exists. Then the Weierstrass gap sequence $G(P)=$ $\{1 \longrightarrow 13\} \cup\{17\} \cup\{r+1\}$ and $H(P)=\{0\} \cup\{14,15,16\} \cup\{18 \longrightarrow\}-\{r+1\}$. Since 14 and 15 are elements in $H(P)$ and $H(P)$ is a semigroup, 28 and 29 are elements of $H(P)$. Thus $r+1 \neq 28,29$, which contradicts the assumption.

Lemma 3.5. There exists a smooth plane curve of degree 7 with a point at which the order sequence is $\{0 \longrightarrow 12\} \cup\{16\} \cup\{r\}$ with $24 \leq r \leq 26$.

Proof. Let $P=(0,0)$ and

$$
\begin{aligned}
f_{2} & =y-x^{2} \\
f_{4} & =\lambda_{1} f_{2}+\lambda_{2} x^{2} f_{2}+\lambda_{3} y^{4} \\
f_{7} & =\mu_{1} f_{4}+\mu_{2} f_{4}\left(x^{3}+y^{3}\right)+\mu_{3}\left(f_{2}\right)^{3} x^{r-24-2\left\lfloor\frac{r-24}{2}\right\rfloor} y^{\left\lfloor\frac{r-24}{2}\right\rfloor},
\end{aligned}
$$

and let C_{7} be the curve with the equation f_{7}.
Then, for general nonzero λ_{i} 's and μ_{i} 's we can check the following:
(1) C_{7} is a smooth curve of degree 7 , since the base locus of the system is only one point $\{(0,0,1)\}$ at which a generic member is smooth. By Bertini's theorem, C_{7} is smooth.
(2) $I\left(f_{2} \cap C_{7}, P\right)=8$, since $I\left(f_{2} \cap C_{7}, P\right)=I\left(f_{2} \cap f_{4}, P\right)=I\left(f_{2} \cap y^{4}, P\right)$.
(3) $I\left(T_{P} C_{7} \cap C_{7}, P\right)=2$, since $I\left(T_{P} C \cap C_{7}, P\right)=I\left(y \cap C_{7}, P\right)$.
(4) $I\left(f_{4} \cap C_{7}, P\right)=r$, since

$$
\begin{aligned}
I\left(f_{4} \cap C_{7}, P\right) & =I\left(f_{4} \cap\left(f_{2}\right)^{3} x^{r-24-2\left\lfloor\frac{r-24}{2}\right\rfloor} y^{\left\lfloor\frac{r-24}{2}\right\rfloor}\right) \\
=3 I\left(f_{4} \cap f_{2}, P\right) & +\left(r-24-2\left\lfloor\frac{r-24}{2}\right\rfloor\right) I\left(f_{4} \cap x, P\right)+\left(\left\lfloor\frac{r-24}{2}\right\rfloor\right) I\left(f_{4} \cap y, P\right) \\
=12 I\left(y \cap f_{2}, P\right) & +\left(r-24-2\left\lfloor\frac{r-24}{2}\right\rfloor\right)+2\left(\left\lfloor\frac{r-24}{2}\right\rfloor\right)
\end{aligned}
$$

Thus the C_{7} is a desired curve.
Lemma 3.6. There exists a smooth plane curve of degree 7 with a point at which the order sequence is $\{0 \longrightarrow 12\} \cup\{16\} \cup\{r\}$ with $17 \leq r \leq 22$.

Proof. Let $P=(0,0)$ and

$$
\begin{aligned}
& f_{2}=y-x^{2} \\
& f_{4}=\lambda_{1} f_{2}+\lambda_{2} x^{2} f_{2}+\lambda_{3} y^{4} \\
& f_{7}=\mu_{1} f_{4}+\mu_{2} f_{4}\left(x^{3}+y^{3}\right)+\mu_{3}\left(f_{2}\right)^{2} x^{r-16-2\left\lfloor\frac{r-16}{2}\right\rfloor} y^{\left\lfloor\frac{r-16}{2}\right\rfloor}
\end{aligned}
$$

and let C_{7} be the curve with the equation f_{7}.
Then, for general nonzero λ_{i} 's and μ_{i} 's we can check the following:
(1) C_{7} is a smooth curve of degree 7 .
(2) $I\left(f_{2} \cap C_{7}, P\right)=8$.
(3) $I\left(T_{P} C_{7} \cap C_{7}, P\right)=2$.
(4) $I\left(f_{4} \cap C_{7}, P\right)=r$.

Thus the C_{7} is a desired curve.
Lemma 3.7. There exists a smooth plane curve of degree 7 with a point at which the order sequence is $\{0 \longrightarrow 12\} \cup\{16\} \cup\{r\}$ with $13 \leq r \leq 15$.

Proof. Let $P=(0,0)$ and

$$
\begin{aligned}
f_{2} & =y-x^{2} \\
f_{4} & =\lambda_{1} f_{2}+\lambda_{2} x^{2} f_{2}+\lambda_{3} y^{4} \\
f_{7} & =\mu_{1} f_{4}+\mu_{2} f_{4}\left(x^{3}+y^{3}\right)+\mu_{3}\left(f_{2}\right) x^{r-8-2\left\lfloor\frac{r-8}{2}\right\rfloor} y^{\left\lfloor\frac{r-8}{2}\right\rfloor},
\end{aligned}
$$

and let C_{7} be the curve with the equation f_{7}.
Then, for general nonzero λ_{i} 's and μ_{i} 's we can check the following:
(1) C_{7} is a smooth curve of degree 7 .
(2) $I\left(f_{2} \cap C_{7}, P\right)=8$.
(3) $I\left(T_{P} C_{7} \cap C_{7}, P\right)=2$.
(4) $I\left(f_{4} \cap C_{7}, P\right)=r$.

Thus the C_{7} is a desired curve.
Theorem 3.8. Let P be a 2-flex of order of contact 8 on a smooth plane curve of degree 7. Then the order sequence at P is one of $\{0 \longrightarrow 12\} \cup\{16\} \cup\{r\}$ for $r \in\{13 \longrightarrow 15\} \cup\{17 \longrightarrow 26\}$.

Also there exists a smooth plane curve of degree 7 with a 2-flex point P at which the order sequence is $\{0 \longrightarrow 12\} \cup\{16\} \cup\{r\}$ for $r \in\{13 \longrightarrow 15\} \cup\{17 \longrightarrow$ $22\} \cup\{24 \longrightarrow 26\}$.

Remark 3.9. In the set $\{13,14,15\} \cup\{17 \longrightarrow 28\}$ of all candidates for r, we proved or disproved the existence of a smooth curve of degree 7 corresponding to each integer except for the number 23 .
3.2. On a curve of degree 8 In this case the orders determined by lines and the power of osculating conic are

$$
\{0 \longrightarrow 10\} \cup\{10 \longrightarrow 16\} \cup\{20 \longrightarrow 22\}=\{0 \longrightarrow 16\} \cup\{20 \longrightarrow 22\}
$$

and its cardinality is $g-1=20$. Hence we need to find one more order.
Using Bezout's theorem and Namba's Lemma, we have $i_{1}=2, i_{2}=10, i_{3}=12$, $i_{4}=20$, and $i_{5} \geq 22$.

Since the degree of canonical divisor is $2 g-2=40$, any order of canonical divisor at P is in the set $\{0 \longrightarrow 40\}$. Thus one more order r is an element in the set $\{17,18,19\} \cup\{23 \longrightarrow 40\}$. Let the divisor $r P$ be cut out by a curve f. If $\operatorname{deg} f \leq 4$, then $I(f \cap C, P)=r \geq 17$. Namba's lemma implies that $I\left(f \cap F_{2}, P\right) \geq 10$, which is bigger than $(\operatorname{deg} f)\left(\operatorname{deg} F_{2}\right) \leq 8$. By Bezout's theorem, and that f is a multiple of F_{2}, say $f=F_{2} h$ with $\operatorname{deg} h \leq 2$. Then $I(h \cap C, P)=r-10 \geq 7$ and hence $h=F_{2}$ and $r=20$ by Bezout's theorem, which is a contradiction to the choice of r. Thus the degree of f is 5 since any canonical divisor is cut out by a curve of degree 5 . We can also prove that f is irreducible in a similar way.

Lemma 3.10. There exists a smooth plane curve of degree 8 with a point at which the order sequence is $\{0 \longrightarrow 16\} \cup\{20 \longrightarrow 22\} \cup\{40\}$, i.e., $r=40$.

Proof. Let $P=(0,0)$ and

$$
\begin{aligned}
f_{2} & =y-x^{2} \\
f_{5} & =\lambda_{1}\left(y-x^{2}\right)+\lambda_{2} x^{3}\left(y-x^{2}\right)+\lambda_{3} y^{5} \\
f_{8} & =\mu_{1} f_{5}+\mu_{2} f_{5}\left(x^{3}+y^{3}\right)+\mu_{3}\left(f_{2}\right)^{4},
\end{aligned}
$$

and let C_{8} be the curve defined by the equation f_{8}.
Then, for general nonzero λ_{i} 's and μ_{i} 's we can check the following:
(1) C_{8} is a smooth curve of degree 8 .
(2) $I\left(f_{2} \cap C_{8}, P\right)=10$.
(3) $I\left(T_{P} C_{8} \cap C_{8}, P\right)=2$.
(4) $I\left(f_{5} \cap C_{8}, P\right)=40$.

Thus the C_{8} is a desired curve.
Lemma 3.11. There is no smooth plane curve of degree 8 with a point at which the order sequence is $\{0 \longrightarrow 16\} \cup\{20 \longrightarrow 22\} \cup\{r\}$ for $35 \leq r \leq 39$.

Proof. Suppose that such a curve exists. Then the Weierstrass gap sequence $G(P)=$ $\{1 \longrightarrow 17\} \cup\{21 \longrightarrow 23\} \cup\{r+1\}$ and $H(P)=\{0\} \cup\{18,19,20\} \cup\{24 \longrightarrow\}-\{r+1\}$. Since 18, 19 and 20 are elements in $H(P)$ and $H(P)$ is a semigroup, every integers from 36 to 40 are elements of $H(P)$. However, since the number $r+1$ belongs to this set, it is a contradiction.

Lemma 3.12. There exists a smooth plane curve of degree 8 with a point at which the order sequence is $\{0 \longrightarrow 16\} \cup\{20 \longrightarrow 22\} \cup\{r\}$ for $30 \leq r \leq 34$.

Proof. Let $P=(0,0)$ and

$$
\begin{aligned}
f_{2} & =y-x^{2} \\
f_{5} & =\lambda_{1}\left(y-x^{2}\right)+\lambda_{2} x^{3}\left(y-x^{2}\right)+\lambda_{3} y^{5} \\
f_{8} & =\mu_{1} f_{5}+\mu_{2} f_{5}\left(x^{3}+y^{3}\right)+\mu_{3}\left(f_{2}\right)^{3} x^{r-30-2\left\lfloor\frac{r-30}{2}\right\rfloor} y^{\left\lfloor\frac{r-30}{2}\right\rfloor},
\end{aligned}
$$

and let C_{8} be the curve with the equation f_{8}.
Then, for general nonzero λ_{i} 's and μ_{i} 's we can check the following:
(1) C_{8} is a smooth curve of degree 8 .
(2) $I\left(f_{2} \cap C_{8}, P\right)=10$.
(3) $I\left(T_{P} C_{8} \cap C_{8}, P\right)=2$.
(4) $I\left(f_{5} \cap C_{8}, P\right)=r$.

Thus the C_{8} is a desired curve.
Lemma 3.13. There exists a smooth plane curve of degree 8 with a point at which the order sequence is $\{0 \longrightarrow 16\} \cup\{20 \longrightarrow 22\} \cup\{r\}$ for $23 \leq r \leq 28$.

Proof. Let $P=(0,0)$ and

$$
\begin{aligned}
f_{2} & =y-x^{2} \\
f_{5} & =\lambda_{1}\left(y-x^{2}\right)+\lambda_{2} x^{3}\left(y-x^{2}\right)+\lambda_{3} y^{5} \\
f_{8} & =\mu_{1} f_{5}+\mu_{2} f_{5}\left(x^{3}+y^{3}\right)+\mu_{3}\left(f_{2}\right)^{2} x^{r-20-2\left\lfloor\frac{r-20}{2}\right\rfloor} y^{\left\lfloor\frac{r-20}{2}\right\rfloor},
\end{aligned}
$$

and let C_{8} be the curve with the equation f_{8}.
Then, for general nonzero λ_{i} 's and μ_{i} 's we can check the following:
(1) C_{8} is a smooth curve of degree 8.
(2) $I\left(f_{2} \cap C_{8}, P\right)=10$.
(3) $I\left(T_{P} C_{8} \cap C_{8}, P\right)=2$.
(4) $I\left(f_{5} \cap C_{8}, P\right)=r$.

Thus the C_{8} is a desired curve.

Lemma 3.14. There exists a smooth plane curve of degree 8 with a point at which the order sequence is $\{0 \longrightarrow 16\} \cup\{20 \longrightarrow 22\} \cup\{r\}$ for $17 \leq r \leq 19$.

Proof. Let $P=(0,0)$ and

$$
\begin{aligned}
& f_{2}=y-x^{2} \\
& f_{5}=\lambda_{1}\left(y-x^{2}\right)+\lambda_{2} x^{3}\left(y-x^{2}\right)+\lambda_{3} y^{5} \\
& f_{8}=\mu_{1} f_{5}+\mu_{2} f_{5}\left(x^{3}+y^{3}\right)+\mu_{3} f_{2}\left(x^{r-10-2\left\lfloor\frac{r-10}{2}\right\rfloor} y^{\left\lfloor\frac{r-10}{2}\right\rfloor}\right),
\end{aligned}
$$

and let C_{8} be the curve with the equation f_{8}.
Then, for general nonzero λ_{i} 's and μ_{i} 's we can check the following:
(1) C_{8} is a smooth curve of degree 8 .
(2) $I\left(f_{2} \cap C_{8}, P\right)=10$.
(3) $I\left(T_{P} C_{8} \cap C_{8}, P\right)=2$.
(4) $I\left(f_{5} \cap C_{8}, P\right)=r$.

Thus the C_{8} is a desired curve.

Theorem 3.15. Let P be a 2-flex of order of contact 10 on a smooth plane curve of degree 8. Then the order sequence at P is one of $\{0 \longrightarrow 16\} \cup\{20 \longrightarrow 22\} \cup\{r\}$ for $r \in\{17 \longrightarrow 19\} \cup\{23 \longrightarrow 34\} \cup\{40\}$.

Also there exists a smooth plane curve of degree 8 with a 2-flex point P at which the order sequence is $\{0 \longrightarrow 16\} \cup\{20 \longrightarrow 22\} \cup\{r\}$ for $r \in\{17 \longrightarrow 19\} \cup\{23 \longrightarrow$ $28\} \cup\{30 \longrightarrow 34\} \cup\{40\}$.

Remark 3.16. In the set $\{17,18,19\} \cup\{23 \longrightarrow 40\}$ of all candidates for r, we proved or disproved the existence of a smooth curve of degree 8 corresponding to each integer except for the number 29.
3.3. On a curve of degree 9 In this case the orders determined by lines and the power of osculating conic are

$$
\begin{aligned}
& \{0 \longrightarrow 12\} \cup\{12 \longrightarrow 20\} \cup\{24 \longrightarrow 28\} \cup\{36\} \\
& =\{0 \longrightarrow 20\} \cup\{24 \longrightarrow 28\} \cup\{36\}
\end{aligned}
$$

and its cardinality is $g-1=27$. Hence we need to find one more order.
Using Bezout's theorem and Namba's Lemma, we have $i_{1}=2, i_{2}=12, i_{3}=14$, $i_{4}=24, i_{5}=26$, and $i_{6} \geq 36$.

One more order r is an element in the set

$$
\{21,22,23\} \cup\{29 \longrightarrow 35\} \cup\{37 \longrightarrow 54\}
$$

Let the divisor $r P$ be cut out by a curve f. If $\operatorname{deg} f \leq 5$, then $I(f \cap C, P)=r \geq 21$. Namba's lemma implies that $I\left(f \cap F_{2}, P\right) \geq 12$, and that f is a multiple of F_{2} by Bezout's theorem. Let $f=h F_{2}, \operatorname{deg} h \leq 3$. Then we have $I(h \cap C, P)=r-12 \geq 9$. By Namba's theorem again, we conclude that h is multiple of F_{2}. Thus $f=F_{2}^{2}$ or $f=F_{2}^{2} \ell$ where ℓ is a line. Hence $I(f \cap C, P)=24,25$ or 26 . Then this is a contradiction. Thus the degree of f is 6 . We can also prove that f is irreducible in a similar way.

Lemma 3.17. There is no smooth plane curve of degree 9 with a point at which the order sequence is $\{0 \longrightarrow 20\} \cup\{24 \longrightarrow 28\} \cup\{36\} \cup\{r\}$ for $r \in\{43 \longrightarrow 47\} \cup\{51 \longrightarrow$ $54\}$.

Proof. Suppose that such a curve exists. Then the Weierstrass gap sequence $G(P)=$ $\{1 \longrightarrow 21\} \cup\{25 \longrightarrow 29\} \cup\{37\} \cup\{r+1\}$ and $H(P)=\{0\} \cup\{22,23,24\} \cup\{30 \longrightarrow$ $36\} \cup\{38 \longrightarrow\}-\{r+1\}$. Since $\{22,23,24,30 \longrightarrow 36\}$ is a subset of $H(P)$ and $H(P)$
is a semigroup, $\{44 \longrightarrow 48,52 \longrightarrow 55\}$ is a subset of $H(P)$. However, since the gap $r+1$ belongs to this set, it is a contradiction.

Lemma 3.18. There exists a smooth plane curve of degree 9 with a point at which the order sequence is $\{0 \longrightarrow 20\} \cup\{24 \longrightarrow 28\} \cup\{36\} \cup\{r\}$ for $r \in\{21 \longrightarrow$ $23\} \cup\{29 \longrightarrow 34\} \cup\{37 \longrightarrow 42\} \cup\{48 \longrightarrow 50\}$.

Proof. Let $P=(0,0)$ and

$$
\begin{aligned}
f_{2}= & y-x^{2} \\
f_{6}= & \lambda_{1}\left(y-x^{2}\right)+\lambda_{2} x^{4}\left(y-x^{2}\right)+\lambda_{3} y^{6} \\
f_{9}= & \mu_{1} f_{6}+\mu_{2} f_{6}\left(x^{3}+y^{3}\right)+\mu_{3}\left(f_{2}\right)^{4} \\
f_{9, r}= & \left\{\begin{array}{l}
\nu_{1} f_{9}+\nu_{2}\left(f_{2}\right)^{4} x^{r-48-2\left\lfloor\frac{r-48}{2}\right\rfloor} y^{\left.y^{\left.\frac{r-48}{2}\right\rfloor}\right\rfloor}, \text { if } 48 \leq r \leq 50 \\
\nu_{1} f_{9}+\nu_{2}\left(f_{2}\right)^{3} x^{r-36-2\left\lfloor\frac{r-36}{2}\right\rfloor} y^{\left.r \frac{r-36}{2}\right\rfloor, \text { if } 37 \leq r \leq 42} \\
\nu_{1} f_{9}+\nu_{2}\left(f_{2}\right)^{2} x^{r-24-2\left\lfloor\frac{r-24}{2}\right\rfloor} y^{\left.r \frac{r-24}{2}\right\rfloor}, \text { if } 29 \leq r \leq 34 \\
\nu_{1} f_{9}+\nu_{2}\left(f_{2}\right) x^{r-12-2\left\lfloor\frac{r-12}{2}\right\rfloor} y^{\left\lfloor\frac{r-12}{2}\right\rfloor,}, \text { if } 21 \leq r \leq 23
\end{array}\right.
\end{aligned}
$$

and let $C_{9, r}$ be the curve with the equation $f_{9, r}$.
Then, for general nonzero λ_{i} 's, μ_{i} 's and ν_{i} 's we can check the following:
(1) $C_{9, r}$ is a smooth curve of degree 9 .
(2) $I\left(f_{2} \cap C_{9, r}, P\right)=12$.
(3) $I\left(T_{P} C_{9, r} \cap C_{9, r}, P\right)=2$.
(4) $I\left(f_{5} \cap C_{9, r}, P\right)=r$.

Thus the $C_{9, r}$ is a desired curve.
Theorem 3.19. Let P be a 2-flex of order of contact 12 on a smooth plane curve of degree 10. Then the order sequence at P is one of $\{0 \longrightarrow 20\} \cup\{24 \longrightarrow 28\} \cup$ $\{36\} \cup\{r\}$ for $r \in\{21 \longrightarrow 23\} \cup\{29 \longrightarrow 35\} \cup\{37 \longrightarrow 42\} \cup\{48 \longrightarrow 50\}$.

Also there exists a smooth plane curve of degree 10 with a 2-flex point P at which the order sequence is $\{0 \longrightarrow 20\} \cup\{24 \longrightarrow 28\} \cup\{36\} \cup\{r\}$ for $r \in\{21 \longrightarrow$ $23\} \cup\{29 \longrightarrow 34\} \cup\{37 \longrightarrow 42\} \cup\{48 \longrightarrow 50\}$.

Remark 3.20. In the set $\{21,22,23\} \cup\{29 \longrightarrow 35\} \cup\{37 \longrightarrow 54\}$ of all candidates for r, we proved or disproved the existence of a smooth curve of degree 9 corresponding to each integer except for the number 35 .

Acknowledgment

The first author was partially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2016R1D1A1B01011730).

References

1. E. Arbarello, M. Cornalba, P.A. Griffiths \& J. Harris: Geometry of Algebraic Curves. I, Springer-Verlag, Berlin/New York, 1985.
2. B. Brieskorn \& H. Knörrer: Plane Algebraic Curves. Modern Birkhäuser Classics, Springer Basel, 2012.
3. S.J. Kim \& J. Komeda: The Weierstrass semigroups on the quotient curve of a plane curve of degree ≤ 7 by an involution. Journal of Algebra 322 (2009), 137-152.
4. M. Namba: Families of meromorphic functions on compact Riemann surfaces. Lecture Notes in Math. 767, Springer-Verlag, Berlin, 1979.
5. J.G. Semple \& L. Roth: Introduction to Algebraic Geometry. Oxford University Press, 1985.
${ }^{\text {a }}$ Department of Mathematics and RINS, Gyeongsang National University, Jinju 52828, Republic of Korea
Email address: skim@gnu.ac.kr
${ }^{\text {b}}$ Department of Information and Communication Engineering, Honam University, Gwanguu 62399, Republic of Korea
Email address: ejkang@honam.ac.kr

[^0]: Received by the editors September 13, 2021. Accepted October 20, 2021.
 2010 Mathematics Subject Classification. 14H55, 14H51, 14H45, 14G50.
 Key words and phrases. order sequence, Weierstrass point, Weierstrass semigroup, smooth plane curve, inflection point, 2-flex, m-flex.

 * Corresponding author.

