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FRAME OPERATORS AND SEMI-FRAME OPERATORS

OF FINITE GABOR FRAMES

N. M. Madhavan Namboothiri a, T. C. Easwaran Nambudiri b and
Jineesh Thomas c, ∗

Abstract. A characterization of frame operators of finite Gabor frames is pre-
sented here. Regularity aspects of Gabor frames in l2(ZN ) are discussed by intro-
ducing associated semi-frame operators. Gabor type frames in finite dimensional
Hilbert spaces are also introduced and discussed.

1. Introduction

Theory of frames is occupying its own space in both pure and applied mathematics

because of its enormous applications. This mathematical theory, first initiated by

Gabor [10] in his Theory of Communication, formulated a fundamental approach to

signal decomposition in terms of elementary signals. His approach has become the

paradigm for the spectral analysis associated with time-frequency methods.

The concept of frames in Hilbert spaces was introduced in 1952 by Duffin and

Schaeffler [7] in their study of non harmonic Fourier series. The pivotal works of

Janssen [12] made it an independent topic of mathematical investigation in 1980s.

The importance of the theory of frames in modern signal processing and time fre-

quency analysis is now entrenched (see [11], for example). Various generalizations

of this concept have been proposed; frame of subspaces [1, 2], pseudo-frames [14],

oblique frames [5] and so on, where in all, the mathematical theory of Gabor frames

(also known as Weyl-Heisenberg frames) plays the key role. These frames are very

specific as they are being generated by translations and modulations of a single

vector in the space concerned.
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Gabor analysis took a new turn with the fundamental works of Daubechies, Gross-

mann and Meyer in 1986 [6] and put forth the idea of combining Gabor analysis with

frame theory. Systematic utilisation of time shifts (translations) and frequency shifts

(modulations) lie at the heart of modern time-frequency analysis. Gabor analysis

aims at representing functions (signals) f ∈ L2(R) as superpositions of translated

and modulated versions of a fixed function g ∈ L2(R).
The most significant tool in frame theory (both in theoretical and applicational

aspects) is the frame operator, associated with a given frame. Observables corre-

sponding to certain physical process can be regarded as operators on an appropriate

Hilbert space. Each observable has its own parameters which in turn determine

the operator. Thus frames corresponding to a given nice operator have substantial

practical importance. In particular, Gabor frame operators, which are very special

in their construction, are receiving significant research attention and are of interest

in this paper too.

In l2(ZN ), a Gabor frame is the set of time-frequency translates of a single vector

in it [16]. The concept of generalised Weyl-Heisenberg frames, frame operators in

L2(R) and its characterization are discussed in [8, 9]. We present this paper in the

following sequel. We begin with some basic definitions and results which are essential

for the present work (see Section 2). The concept of generalised Weyl-Heisenberg

frames in l2(ZN ), frame operators and its characterization are discussed in Section

3. Section 4 mainly focused on regular Gabor frames and interplay between semi

frame operators in connection with Weyl-Heisenberg frame operators. In Section 5,

we deal with the construction and characterization of Gabor type frames in finite

dimensional Hilbert spaces. Our basic references for both abstract Hilbert frame

theory and the theory of Weyl-Heisenberg frames are [4, 11]. In this discussion, H
will denote a separable Hilbert space with inner product ⟨·, ·⟩.

2. Preliminaries

A frame in a Hilbert space H is a sequence {fk}∞k=1 of elements in H such that

A∥f∥2 ≤
∑∞

k=1 |⟨f, fk⟩|2 ≤ B∥f∥2, ∀ f ∈ H
for some constants A,B > 0. Here A and B are called frame bounds. If A = B, then

the frame {fk}∞k=1 is called a tight frame. A tight frame is called a Parseval frame

or normalized tight frame if A = B = 1. Whenever a sequence {fk}∞k=1 of elements

in H satisfies
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∑∞
k=1 |⟨f, fk⟩|2 ≤ B∥f∥2, ∀ f ∈ H

for some constant B > 0, then {fk}∞k=1 is said to be a Bessel sequence or a semi

frame sequence and is a frame sequence if it is a frame for span{fk}∞k=1.

A frame {fk}∞k=1 in H with upper frame bound β spans a dense subspace of H
and ∥fk∥ ≤

√
β for all k. In particular ∥fk∥ ≤ 1 when {fk}∞k=1 is a normalized tight

frame. For a frame {fk}∞k=1 in a Hilbert space H, the map S defined by

Sf =
∑∞

k=1⟨f, fk⟩fk, f ∈ H
is a bounded linear operator on H, called the frame operator of the frame {fk}∞k=1.

The frame operator of a tight frame is a scalar multiple of the identity operator and

that of a Parseval frame is the identity operator.

Remark 2.1. Let {fk}∞k=1 be a frame with frame operator S and frame bounds

A, B in a Hilbert space H. Then,

(i) S is bounded, invertible, self-adjoint and positive. In fact AI ≤ S ≤ BI.

(ii) {S−1fk}∞k=1 is a frame with frame bounds B−1, A−1 and {S−1/2fk}∞k=1 is a

normalized tight frame.

(iii) If A and B are the optimal frame bounds for {fk}∞k=1, then the bounds

B−1, A−1 are the optimal frame bounds for {S−1fk}∞k=1. The frame operator

for {S−1fk}∞k=1 is S−1. Further B−1I ≤ S−1 ≤ A−1I.

Operator with the same definition of S exists for a Bessel sequence {fk}∞k=1 too,

which is not invertible, but still is known as a frame operator in literature. For a

frame {fk}∞k=1 in H with frame operator S, the frame {f̃k}k∈N = {S−1fk}k∈N is

known as the (canonical) dual frame of {fk}∞k=1. A frame {fk}∞k=1 together with its

dual frame {f̃k}k∈N yields the following frame decomposition by which every element

in H has a representation as a superposition of the frame elements.

Theorem 2.2. Let {fk}∞k=1 be a frame in a Hilbert space H with frame operator S.

Then for all f ∈ H, f =
∑∞

k=1⟨f, S−1fk⟩fk and f =
∑∞

k=1⟨f, fk⟩S−1fk.

Here both series converge unconditionally for all f ∈ H.

Remark 2.3. Let {fk}∞k=1 be a frame in H and A : H −→ H be a bounded linear

surjective operator on H. Then {Afk}∞k=1 is a frame in H (see [4]).

In particular, if A is an invertible bounded linear operator on H, then {Afk}∞k=1

is also a frame for H. If {fk}∞k=1 is exact, so is {Afk}∞k=1. If A is unitary, then

{Afk}∞k=1 has the same frame bounds as those of {fk}∞k=1.
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3. Gabor Frame Operators on l2(ZN)

Gabor analysis is mainly based on the interplay between the Fourier transform

and the translation and modulation operators. In our discussion, the finite dimen-

sional space CN is identified with the space l2(ZN ) of complex functions on ZN

equipped with the standard inner product. For each k, l ∈ ZN and g ∈ l2(ZN ), the

Translation operator Tk : l2(ZN ) → l2(ZN ) is defined by

(Tkg)(j)) = g(j − k) for j = 0, 1, 2, ..., N − 1.

and the Modulation operator Ml : l
2(ZN ) → l2(ZN ) is defined by

(Mlg)(j) = e2πilj/Ng(j) for j = 0, 1, 2, ..., N − 1.

The Fourier transform F on l2(ZN ) is the linear transformation defined by

F (f)(k) =
N−1∑
j=0

f(j)e
−2πkj

N

for all f ∈ l2(ZN ) and k = 0, 1, 2, ..., N − 1.

Definition. For g ∈ l2(ZN ) − {0} and Λ ⊆ ZN × ZN , the set {MlTkg; (k, l) ∈ Λ}
is called a Gabor System generated by the window function g. A Gabor frame (also

known as aWeyl-Heisenberg frame) in l2(ZN ) is a Gabor system which spans l2(ZN ).

In the literature, π(k, l) denotes the time-frequency shift operator in l2(ZN ) ([3]),

defined by π(k, l)g = MlTkg for all g ∈ l2(ZN ). Following lemma appeared in [15],

brings out a couple of significant properties of the Gabor frame operators on l2(ZN ).

Lemma 3.1. The frame operator of a Gabor frame {MlTkg : (k, l) ∈ Λ} in l2(ZN ),

where Λ = Λ1 × Λ2 and Λ1, Λ2 are subgroups of ZN commutes with π(k, l) for all

(k, l) ∈ Λ1 × Λ2.

In particular, the frame operator S commutes with all translations Tk, k ∈ Λ1

and all modulations Ml, l ∈ Λ2.

Remark 3.2. The existence of a Gabor frame in l2(ZN ) has been established by

Jim Laurence [13] for primes and by Romanos-Digenes Malikiosis [15] for any N ≥ 4.

Consequently, for any positive integer N , there is a Gabor frame in l2(ZN ) of the

form {MlTkg : (k, l) ∈ Λ1 × Λ2} where |Λ1 × Λ2| ≥ N and Λ1, Λ2 are subgroups of

ZN . This yield the following observation which will be used in sequel.
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Proposition 3.3. For any two subgroups Λ1 and Λ2 of ZN with |Λ1×Λ2| ≥ N , there

is a tight Gabor frame in l2(ZN ) with the identity operator as its frame operator.

Proof. As observed in Remark 3.2, for any two subgroups Λ1 and Λ2 of ZN with

|Λ1 ×Λ2| ≥ N , there is always a Gabor frame {MlTkg : (k, l) ∈ Λ1 ×Λ2} in l2(ZN ).

By Lemma 3.1, the frame operator S of this frame is (trivially bounded), invertible,

positive and commutes with the translation Tp, p ∈ Λ1 and the modulation Mq, q ∈
Λ2. Hence S−1/2 also possesses all the properties. By Remark 2.3, {S−1/2MlTkg =

MlTkS
−1/2g : (k, l) ∈ Λ1 × Λ2} is a Gabor frame on l2(ZN ). For x ∈ l2(ZN ),

x = S−1/2S(S−1/2(x))

= S−1/2(
∑

(k,l)∈Λ

⟨S−1/2(x),MlTkg⟩MlTkg

=
∑

(k,l)∈Λ

⟨x, S−1/2MlTkg⟩MlTkS
−1/2g

=
∑

(k,l)∈Λ

⟨x,MlTkS
−1/2g⟩MlTkS

−1/2g

Hence the frame operator of the Gabor frame {MlTkS
−1/2g : (k, l) ∈ Λ1×Λ2} is the

identity operator. �

Definition. A Gabor frame in l2(ZN ) of the form {MlTkg : (k, l) ∈ Λ1×Λ2} where

Λ1 and Λ2 are subgroups of ZN is called a regular Gabor frame in l2(ZN ).

Construction of frames with a given operator as their frame operator is an inter-

esting theme having practical relevance in the context of frames. As shown in [8],

positive and invertible operators can become frame operators on separable Hilbert

spaces. However, in view of Lemma 3.1, those operators on l2(ZN ) which are positive

and invertible but fail to commute with certain translation and modulation opera-

tors can not correspond to any regular Gabor frame in l2(ZN ). Here, we present a

complete characterization of frame operators of regular Gabor frames in l2(ZN ).

Proposition 3.4. A bounded linear operator on l2(ZN ) can be realized as a frame

operator of a regular Gabor frame in l2(ZN ) if and only if it is positive, invertible and

commutes with translation operator Tp, p ∈ Λ1 and modulation operator Mq, q ∈ Λ2,

for some subgroups Λ1 and Λ2 of ZN with |Λ1 × Λ2| ≥ N .

Proof. Let {MlTkg : (k, l) ∈ Λ1 × Λ2} be a regular Gabor frame in l2(ZN ) with S

as its frame operator. By Remark 2.1 and Lemma 3.1, S is positive, invertible and
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commutes with translation operator Tp, p ∈ Λ1 and modulation operator Mq, q ∈
Λ2.

Conversely if S is a linear positive and invertible operator on l2(ZN ) that com-

mutes with the translation operator Tp, p ∈ Λ1 and modulation operatorMq, q ∈ Λ2,

for some subgroups Λ1 and Λ2 of ZN with |Λ1 × Λ2| ≥ N , then so is its positive

square root S1/2. By Proposition 3.3, there is always a tight regular Gabor frame

{MlTkg : (k, l) ∈ Λ1 ×Λ2} in l2(ZN ) with identity operator I as its frame operator.

The invertibility and commutativity of S1/2 ensure that the image of this frame

under S1/2 is a frame.

This frame is a regular Gabor frame in l2(ZN ), since

S1/2({MlTkg}(k,l)∈Λ1×Λ2
) = {S1/2MlTkg}(k,l)∈Λ1×Λ2

= {MlTkS
1/2g}(k,l)∈Λ1×Λ2

.

Now, for all x ∈ l2(ZN ),∑
(k,l)∈Λ

⟨x,MlTkS
1/2g⟩MlTkS

1/2g = S1/2
∑

(k,l)∈Λ

⟨S1/2x,MlTkg⟩MlTkg

= S1/2IS1/2(x) = S(x).

Thus S is the frame operator of the regular Gabor frame {MlTkS
1/2g}(k,l)∈Λ1×Λ2

. �

4. Gabor Semi-frame Operators and Regularity

Any finite sequence of elements of l2(ZN ) can be considered as a Bessel sequence

in l2(ZN ). Let {uk}k∈Λ, |Λ| < ∞ is such a sequence. Then there is a bounded linear

positive operator S on l2(ZN ) defined by S(x) =
∑
k∈Λ

⟨x, uk⟩uk for all x ∈ l2(ZN ).

We call this operator as the semi-frame operator associated to {uk}k∈Λ.
Analogously, the family G(g,Λ) = {MlTkg : (k, l) ∈ Λ} where g ∈ l2(ZN ) and

Λ ⊆ ZN × ZN , is a Bessel sequence in l2(ZN ). Hence there is an associated semi-

frame operator to this, called the Gabor semi-frame operator associated with the

generating set Λ and generating function g.

Proposition 4.1. Let Λ = Λ1 × Λ2 ⊆ ZN × ZN be such that Λ′
1 = Λ1 − r and

Λ′
2 = Λ2 − t are subgroups of ZN for some (r, t) ∈ ZN ×ZN with | Λ |≥ N . If S is a

Gabor semi-frame operator on l2(ZN ) associated with G(g,Λ) then there are Gabor

semi-frame operators Sr and St on CN such that STr = TrSr and SMt = MtSt.

Moreover SrTh = ThSr for all h ∈ Λ′
1 and StMp = MpSt for all p ∈ Λ′

2.
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Proof. Let S be the semi-frame operator of G(g,Λ) as given in the statement. Then

for x ∈ l2(ZN ), S(x) =
∑

(k,l)∈Λ1×Λ2

⟨x,MlTkg⟩MlTkg.

STr(x) =
∑

(k,l)∈Λ1×Λ2

⟨Tr(x),MlTkg⟩MlTkg

=
∑

(k,l)∈Λ1×Λ2

⟨x, e2πilr/NMlTk−rg⟩MlTkg

= Tr

∑
(k′,l)∈Λ′

1×Λ2

⟨x,MlTk′g⟩MlTk′g

= TrSr(x),

where Sr(x) =
∑

(k′,l)∈Λ′
1×Λ2

⟨x,MlTk′g⟩MlTk′g. Also,

SMt(x) =
∑

(k,l)∈Λ1×Λ2

⟨Mt(x),MlTkg⟩MlTkg

=
∑

(k,l)∈Λ1×Λ2

⟨x,Ml−tTkg⟩MlTkg

=
∑

(k,l′)∈Λ1×Λ′
2

⟨x,Ml′Tkg⟩Ml′+tTkg

= Mt

∑
(k,l′)∈Λ1×Λ′

2

⟨x,Ml′Tkg⟩Ml′Tkg

= MtSt(x),

where St(x) =
∑

(k,l′)∈Λ′×Λ′
2

⟨x,Ml′Tkg⟩Ml′Tkg.

Hence there are Gabor semi-frame operators Sr and St on l2(ZN ) such that STr =

TrSr and SMt = MtSt. Now for h ∈ Λ′
1,

SrTh(x) =
∑

(k′,l)∈Λ′
1×Λ2

⟨Th(x),MlTk′g⟩MlTk′g

=
∑

(k′,l)∈Λ′
1×Λ2

⟨x, T−hMlTk′g⟩MlTk′g

=
∑

(k′,l)∈Λ′
1×Λ2

⟨x, e2πilh/NMlTk′−hg⟩MlTk′g.
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Taking k′ − h = k′′, we have

SrTh(x) =
∑

(k′′,l)∈Λ′
1×Λ2

e−2πilh/N ⟨x,MlTk′′g⟩MlTk′′+hg

= Th

∑
(k′′,l)∈Λ′

1×Λ2

⟨x,MlTk′′g⟩MlTk′′g

= ThSr(x).

Similarly, for each p ∈ Λ′
2, StMp = MpSt. Thus Sr commutes with all translations

Th for every h ∈ Λ′
1 and St commutes with all modulations Mp for every p ∈ Λ′

2. �

Remark 4.2. It can be noted that if S is a Gabor semi-frame operator as in Propo-

sition 4.1, then the invertibility of S, Sr and St are equivalent.

Theorem 4.3. If the Gabor semi-frame operator S as in Proposition 4.1 is invert-

ible, then there are regular Gabor frame operators S′ and S′′ on l2(ZN ) such that

TrMtS
′ = STrMt and MtTrS

′′ = SMtTr.

Proof. By Proposition 4.1, there is a Gabor semi-frame operator Sr on l2(ZN ) such

that STr = TrSr, where Sr commutes with all translations Th, h ∈ Λ′
1 = Λ1 − r.

Also, by the same proposition there is a Gabor semi-frame operator (Sr)t on l2(ZN )

such that SrMt = Mt(Sr)t, and (Sr)t commutes with all modulations Mp, p ∈ Λ′
2

and Λ′
2 = Λ2 − t. Now

(Sr)t =
∑

(k,l)∈Λ′
1×Λ′

2

⟨x,MlTkg⟩MlTkg

and (Sr)t commutes with all translations Th, h ∈ Λ′
1 since Λ′

1 is a subgroup of ZN .

Also, STrMt = TrSrMt = TrMt(Sr)t so that (Sr)t = (TrMt)
∗S(TrMt).

Since S is invertible and positive, so is (Sr)t. Thus (Sr)t is an invertible Gabor semi-

frame operator which commutes with all translations Th, h ∈ Λ′
1 and modulations

Mt, t ∈ Λ′
2 where Λ′

1 × Λ′
2 is the generating set for the corresponding semi-frame.

Hence by Proposition 3.4, S′ = (Sr)t is a regular Gabor frame operator. By taking

St instead of Sr, it follows that there exists S′′ on l2(ZN ) such that MtTrS
′′ =

SMtTr. �

Example 4.4. In the space C12 with g = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) ∈ C12, Λ1 =

{1, 4, 7, 10} and Λ2 = {1, 3, 5, 7, 9, 11}, the family P = {MlTkg : l ∈ Λ2, k ∈ {1, 4}}
is linearly independent since g identifies the span({MlTk : l ∈ Λ2, k ∈ {1, 4}}) (see
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[13]). Hence P is a basis for C12. Thus {MlTkg : (k, l) ∈ Λ1 ×Λ2} is a Gabor frame

in C12, but non regular.

However, by Theorem 4.3, when Λ′
1 = Λ1 + 2 as well as Λ′

2 = Λ1 + 1, the family

{MlTkg; (k, l) ∈ Λ′
1 × Λ′

2} becomes a regular Gabor frame in C12.

Let Λ1 and Λ2 be any two subsets of ZN . Define r = minΛ1 and s = minΛ2.

Also let Λ′
1 and Λ′

2 are the subgroups of ZN generated by the subsets Λ1 − r and

Λ2 − s respectively. Then Λ̃1 = Λ′
1 + r and Λ̃2 = Λ′

2 + s are subsets of ZN such that

Λ1 ⊆ Λ̃1 and Λ2 ⊆ Λ̃2.

Remark 4.5. Let {MlTkg : (k, l) ∈ Λ1 × Λ2} be an irregular Gabor frame in CN .

Then by above discussion there exists unique numbers r and s corresponding to Λ1

and Λ2 and there exists unique subsets Λ̃1 and Λ̃2 of ZN with Λ1 ⊆ Λ̃1 and Λ2 ⊆ Λ̃2

such that Λ′
1 = Λ̃1 − r and Λ′

2 = Λ̃2 − s are subgroups of ZN . Also note that

{MlTkg : (k, l) ∈ Λ̃1 × Λ̃2} is again a Gabor frame in CN , actually it is a smallest

possible extension of the given irregular Gabor frame to an almost regular Gabor

frame in CN . Then from the proof of Proposition 4.1, {MlTkg : (k, l) ∈ Λ′
1 × Λ′

2} is

a regular Gabor frame.

5. Gabor Type Frames in Finite Dimensional Hilbert Spaces

Abstract frames in Hilbert spaces are countable subfamilies of the space, satis-

fying the required frame inequality. Where as Gabor frames are special types of

frames having specific construction from a single vector by the action of a family of

unitary operators, produced by certain translation and modulation operators, up on

the generating vector. Such a construction is an interesting theme in the context of

general finite dimensional Hilbert spaces. We discuss this in view of [8].

Let U be a bounded linear operator from a Hilbert space H to a Hilbert space K
with its range set RU is closed. Then there exists a bounded operator U † from K to

H such that UU †f = f for all f ∈ RU . Moreover UU † is the orthogonal projection

of H onto RU (See [4], Lemma A.7.1).

Theorem 5.1. Let {fk}∞k=1 be a frame in K with bounds A and B and let U : K −→
H be a bounded linear operator with non trivial closed range. Then {Ufk}∞k=1 is a

frame sequence with bounds A ∥ U † ∥−2 and B ∥ U ∥2.

Proof. First observe that
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∞∑
k=1

| ⟨f, Ufk⟩ |2 =

∞∑
k=1

| ⟨U∗f, fk⟩ |2

≤ B ∥ U∗f ∥2≤ B ∥ U∗ ∥2∥ f ∥2= B ∥ U ∥2∥ f ∥2 .

Thus {Ufk}∞k=1 is a Bessel sequence in H with upper frame bound B ∥ U ∥2.
For h ∈ Span{Ufk}∞k=1, there is f ∈ Span{fk}∞k=1 with h = Uf .

Since UU † is the orthogonal projection onto RU , it is self adjoint and hence,

h = Uf = (UU †)(Uf) = (U †)∗U∗(Uf).

Thus, ∥ h ∥2≤∥ (U †)∗ ∥2∥ U∗Uf ∥2 ≤ ∥U†∥2
A

∑∞
k=1 | ⟨U∗Uf, fk⟩ |2

= ∥U†∥2
A

∑∞
k=1 | ⟨h,Ufk⟩ |2.

Since U : K −→ H is of non trivial closed range, the remaining assertions follow. �

Remark 5.2. Let {fk}∞k=1 be a frame in K with bounds A and B and U : K −→ H
be a bounded linear surjective operator. Then {Ufk}∞k=1 is a frame inH with bounds

A ∥ U † ∥−2 and B ∥ U ∥2.

Let H be a finite dimensional Hilbert space and let {x1, x2, . . . , xn} be an

orthonormal basis for H. The map U defined by U(ej) = xj for j = 1, 2, . . . , n,

where {ej : j = 1, 2, . . . , n} is the standard basis of CN which defines a unitary

map from CN to H.

Now, for a Gabor frame {MlTkg : (k, l) ∈ Λ}, Λ ⊆ ZN×ZN in l2(ZN ), by Remark

5.2, {UMlTkg : (k, l) ∈ Λ}, Λ ⊆ ZN × ZN is a frame in H. Further UMlU
−1 and

UTkU
−1 are bounded linear operators on H and

U(MlTkg) = (UMlU
−1)(UTkU

−1)U(g) for each (k, l) ∈ Λ.

DenoteMU
l = UMlU

−1 and TU
k = UTkU

−1. ThenMU
l MU

m = MU
l+m and TU

k TU
k′ =

TU
k+k′ for each {l, m, k, k′} ⊆ ZN . Thus {UMlTkg : (k, l) ∈ Λ} = {MU

l TU
k U(g) :

(k, l) ∈ Λ}, Λ ⊆ ZN × ZN is a frame in H.

Definition. Let H be a Hilbert space of dimension N . For l, k ∈ ZN and a unitary

linear map U : l2(ZN ) 7→ H, let MU
l = UMlU

−1 and TU
k = UTkU

−1 where Tk

and Ml are respectively, the translation and modulation operators on l2(ZN ). The

unitary operators MU
l and TU

k are called generalised modulation and generalised

translation respectively on H associated to the unitary operator U . A frame of the

form {MU
l TU

k h : (k, l) ∈ Λ} where Λ ⊆ ZN × ZN and h ∈ H is called a Gabor type

frame in H. If Λ = Λ1 × Λ2 with Λ1 and Λ2 are subgroups of ZN , then the Gabor

type frame {MU
l TU

k h : (k, l) ∈ Λ} is called a regular Gabor type frame.
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Here {MU
l TU

k : (k, l) ∈ Λ ⊆ ZN × ZN} is a subfamily of the group of unitary

operators on H.

Obviously, every Gabor frame in l2(ZN ) is also a Gabor type frame in l2(ZN ).

The following simple observation is interesting in this context.

Proposition 5.3. The Fourier transform F on l2(ZN ) maps Gabor frames in l2(ZN )

into Gabor type frames in l2(ZN ) (which are not Gabor frames).

Proof. The Fourier transform F on l2(ZN ) is a unitary map that converts transla-

tions into modulations and modulations into translations on l2(ZN ). Let G(g,Λ) =
{MlTkg : (k, l) ∈ Λ = Λ1 × Λ2} be a Gabor frame in l2(ZN ). The commutator

relations FTk = M−kF and FMl = TlF yield that the image F(G(g,Λ)) of this

Gabor frame under F takes the form {TlM−kF(g) : (k, l) ∈ Λ1 × Λ2} which is not

of the Gabor frame structure that we follow.

However, again from commutator relations FTk = M−kF and FMl = TlF ,

we observe that M−k = FTkF−1 and Tl = FMlF−1 respectively. Thus Tl and

M−k appearing in the image frame are respectively the generalised modulations and

generalised translations on l2(ZN ). In particular, F(G(g,Λ)) is a Gabor type frame

in l2(ZN ). Thus images of Gabor frames in l2(ZN ) under the Fourier transform F
are Gabor type frames in l2(ZN ). �

Remark 5.4. More generally, every unitary linear map from l2(ZN ) onto a Hilbert

space H sends Gabor frames in l2(ZN ) into a Gabor type frames in H.

The following proposition gives an interesting property of the family of unitary

operators on a finite dimensional Hilbert space.

Proposition 5.5. The family of all Gabor type frames in a given finite dimensional

Hilbert space H is invariant under every unitary linear map on H.

Proof. Let H be an N-dimensional Hilbert space and {MU
l TU

k h : (k, l) ∈ Λ ⊆ ZN ×
ZN}, where h ∈ H, be a Gabor type frame in H. Then there is a g ∈ l2(ZN ) such

that Ug = h. Now consider a unitary map V on H. Then V U is a unitary map

from l2(ZN ) onto H. Also

{VMU
l TU

k h : (k, l) ∈ Λ} = {V (UMlU
−1)V −1V (UTkU

−1)V −1V Ug : (k, l) ∈ Λ}

= {V UMl(V U)−1V UTk(V U)−1V Ug : (k, l) ∈ Λ}

= {MV U
l T V U

k V Ug : (k, l) ∈ Λ}
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Clearly {MV U
l T V U

k V Ug : (k, l) ∈ Λ} is a Gabor type frame in H with generating

function V Ug and generating set Λ. This completes the proof. �

Theorem 5.6. A linear operator on a finite dimensional Hilbert space H of dimen-

sion N is a frame operator of a regular Gabor type frame in H if and only if it is

positive, invertible and commutes with unitary operators of the form MU
l and TU

k on

H for some unitary operator U from l2(ZN ) onto H for all (k, l) ∈ Λ1 × Λ2 where

Λ1 and Λ2 are subgroups of ZN with |Λ1 × Λ2| ≥ N .

Proof. Let {MU
l TU

k h : (k, l) ∈ Λ1×Λ2}, where h ∈ H, be a regular Gabor type frame

in H and S be a the frame operator of the regular Gabor frame {MlTkg : (k, l) ∈
Λ1×Λ2} in l2(ZN ), with Ug = h. Then S is a positive and invertible linear operator

on l2(ZN ). Moreover S commutes with the translations Tk, k ∈ Λ1 and modulations

Ml, l ∈ Λ2. Now S′ = USU−1 is the frame operator of the regular Gabor type frame

{MU
l TU

k h : (k, l) ∈ Λ1 × Λ2}, Λ1 × Λ2 ⊆ ZN × ZN . Obviously, S′ is positive and

invertible. Also, for any l ∈ Λ2

S′MU
l = (USU−1)(UMlU

−1)

= USMlU
−1

= UMlSU
−1

= (UMlU
−1)(USU−1)

= MU
l S′

Similarly we have S′TU
k = TU

k S′, for any k ∈ λ1. Thus S′ commutes with all the

operators MU
l , l ∈ λ2 and TU

k , k ∈ λ1.

Conversely suppose that S′ be a positive and invertible linear operator on H,

such that it commutes with all the operators MU
l , l ∈ λ2 and TU

k , k ∈ λ1 for some

unitary operator U from l2(ZN ) onto H and for some subgroups Λ1 and Λ2 of ZN

with |Λ1 × Λ2| ≥ N . Then S = U−1S′U is a positive and invertible linear operator

on l2(ZN ) and hence by Proposition 3.4 it is the frame operator of a regular Gabor

frame say {MlTkg : (k, l) ∈ Λ1 ×Λ2}, g ∈ l2(ZN ). Now S′ = USU−1 and hence it is

the frame operator of the regular Gabor type frame {MU
l TU

k h : (k, l) ∈ Λ1 × Λ2} in

H. �

Analogous to our discussions on irregular Gabor frames in CN , irregular Gabor

type frames can be considered in H and also, regular Gabor type frames can be

constructed in H from irregular ones.
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