EVALUATIONS OF THE ROGERS-RAMANUJAN CONTINUED FRACTION BY THETA-FUNCTION IDENTITIES

Dae Hyun Paek

Abstract. In this paper, we use theta-function identities involving parameters $l_{5, n}$, $l_{5, n}^{\prime}$, and $l_{5,4 n}^{\prime}$ to evaluate the Rogers-Ramanujan continued fractions $R\left(e^{-2 \pi \sqrt{n / 20}}\right)$ and $S\left(e^{-\pi \sqrt{n / 5}}\right)$ for some positive rational numbers n.

1. Introduction

The Rogers-Ramanujan continued fractions $R(q)$ and $S(q)$, for $|q|<1$, are defined by

$$
R(q)=\frac{q^{1 / 5}}{1}+\frac{q}{1}+\frac{q^{2}}{1}+\frac{q^{3}}{1}+\cdots
$$

and

$$
S(q)=-R(-q)
$$

In his first two letters to G. H. Hardy, S. Ramanujan asserted that

$$
\begin{aligned}
& R\left(e^{-2 \pi}\right)=\sqrt{\frac{5+\sqrt{5}}{2}}-\frac{\sqrt{5}+1}{2} \\
& S\left(e^{-\pi}\right)=\sqrt{\frac{5-\sqrt{5}}{2}}-\frac{\sqrt{5}-1}{2}
\end{aligned}
$$

and

$$
R\left(e^{-2 \pi \sqrt{5}}\right)=\frac{\sqrt{5}}{1+\left(5^{3 / 4}\left(\frac{\sqrt{5}-1}{2}\right)^{5 / 2}-1\right)^{1 / 5}}-\frac{1+\sqrt{5}}{2}
$$

[^0]See [4, 5] for more details about the proofs and historical remarks of these evaluations. Further explicit evaluations of $R\left(e^{-2 \pi \sqrt{n}}\right)$ and $S\left(e^{-\pi \sqrt{n}}\right)$ for some positive rational numbers n were given in [4, 5, 12, 13]. Ramanathan [8, 9, 10] evaluated $R\left(e^{-2 \pi \sqrt{n}}\right)$ for $n=1,2,5, \frac{2}{5}, \frac{17}{5}$ and $S\left(e^{-\pi \sqrt{n}}\right)$ for $n=1,5, \frac{3}{5}, \frac{3}{7}, \frac{23}{5}$. Ramanathan [11] also evaluated $R\left(e^{-2 \pi \sqrt{n}}\right)$ for $n=\frac{2}{5}, \frac{17}{5}$ and $S\left(e^{-\pi \sqrt{n}}\right)$ for $n=\frac{7}{5}, \frac{23}{5}$ by using Kronecker's limit formula. Berndt and Chan [4] established values of $R\left(e^{-2 \pi \sqrt{n}}\right)$ for $n=4,9,16,64$ and $S\left(e^{-\pi \sqrt{n}}\right)$ for $n=\frac{3}{5}, \frac{7}{5}, \frac{1}{15}, \frac{1}{35}$ by employing an eta-function identity. Meanwhile, Chan [6] evaluated $S\left(e^{-\pi \sqrt{3}}\right)$ by using a modular equation. Berndt, Chan, and Zhang [5] derived formulas for the explicit evaluations of $R\left(e^{-2 \pi \sqrt{n}}\right)$ and $S\left(e^{-\pi \sqrt{n}}\right)$ for positive rational numbers n in terms of Ramanujan-Weber class invariants. In particular, they determined the values of $R\left(e^{-6 \pi}\right)$ and $S\left(e^{-\pi \sqrt{n}}\right)$ for $n=9$, $\frac{1}{5}, \frac{3}{5}, \frac{9}{5}, \frac{11}{5}, \frac{13}{5}, \frac{29}{5}, \frac{41}{5}, \frac{53}{5}, \frac{89}{5}, \frac{101}{5}$.

Yi [13] established some formulas and found values of $R\left(e^{-2 \pi \sqrt{n}}\right)$ and $S\left(e^{-\pi \sqrt{n}}\right)$ by using modular equations of degrees 5 or 25 . In addition, Yi [13] employed modular equations of degree $1, p, 5$, and $5 p$ for any positive integer p so that she was able to compute $R\left(e^{-2 \pi \sqrt{n}}\right)$ for $n=1,2,3,4,9,16, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{7}{5}, \frac{8}{5}, \frac{9}{5}, \frac{1}{9}, \frac{1}{10}$, $\frac{1}{15}, \frac{1}{16}, \frac{1}{20}, \frac{1}{25}, \frac{1}{35}, \frac{1}{40}, \frac{1}{45}$ and $S\left(e^{-\pi \sqrt{n}}\right)$ for $n=1,3,9,27, \frac{1}{3}, \frac{1}{5}, \frac{3}{5}, \frac{7}{5}, \frac{9}{5}, \frac{1}{9}, \frac{1}{15}, \frac{1}{25}$, $\frac{1}{27}, \frac{1}{35}, \frac{1}{45}$. Recently, Paek and Yi [7] evaluated $R\left(e^{-2 \pi \sqrt{n}}\right)$ and $S\left(e^{-\pi \sqrt{n}}\right)$ for $n=\frac{4}{5}$, $\frac{16}{5}$ by using modular equations of degree 5 . Saikia [12] evaluated explicit values of $R\left(e^{-2 \pi \sqrt{n}}\right)$ for $n=1,4, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{9}{5}, \frac{1}{10}$ and $S\left(e^{-\pi \sqrt{n}}\right)$ for $n=1, \frac{1}{5}, \frac{3}{5}, \frac{9}{5}$ by using parametrization of Ramanujan's theta-functions.

In this paper, we use theta-function identities involving parameters $l_{5, n}, l_{5, n}^{\prime}$, and $l_{5,4 n}^{\prime}$ to show how to evaluate $R\left(e^{-2 \pi \sqrt{n}}\right)$ for $n=\frac{3}{5 \cdot 4^{m}}, \frac{9}{5 \cdot 4^{m}}, \frac{1}{15 \cdot 4^{m}}, \frac{1}{45 \cdot 4^{m}}$ and $S\left(e^{-\pi \sqrt{n}}\right)$ for $n=\frac{3}{5 \cdot 4^{m-1}}, \frac{9}{5 \cdot 4^{m-1}}, \frac{1}{15 \cdot 4^{m-1}}, \frac{1}{45 \cdot 4^{m-1}}$, where m is any positive integer. Furthermore, we establish explicit evaluations of these for $m=1,2$, or 3 .

Ramanujan's theta-function ψ is defined by

$$
\psi(q)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}
$$

where $|q|<1$.
Recall the parameters $l_{k, n}$ and $l_{k, n}^{\prime}$ for the theta-function ψ introduced in [14]. For any positive real numbers k and n, define $l_{k, n}$ and $l_{k, n}^{\prime}$ by

$$
\begin{equation*}
l_{k, n}=\frac{\psi(-q)}{k^{1 / 4} q^{(k-1) / 8} \psi\left(-q^{k}\right)} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{k, n}^{\prime}=\frac{\psi(q)}{k^{1 / 4} q^{(k-1) / 8} \psi\left(q^{k}\right)} \tag{1.2}
\end{equation*}
$$

where $q=e^{-\pi \sqrt{n / k}}$.

We employ the following formulas in [12, Theorem 3.1] to evaluate $R\left(e^{-2 \pi \sqrt{n / 20}}\right)$ and $S\left(e^{-\pi \sqrt{n / 5}}\right)$ in terms of $l_{5, n}^{\prime}$ and $l_{5, n}$, respectively.

$$
\begin{equation*}
\frac{1}{R^{5}\left(e^{-2 \pi \sqrt{n / 20}}\right)}-11-R^{5}\left(e^{-2 \pi \sqrt{n / 20}}\right)=\sqrt{5} l_{5, n}^{\prime 2}\left(\frac{\sqrt{5} l_{5, n}^{\prime 2}-5}{\sqrt{5} l_{5, n}^{\prime 2}-1}\right)^{2} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{S^{5}\left(e^{-\pi \sqrt{n / 5}}\right)}+11-S^{5}\left(e^{-\pi \sqrt{n / 5}}\right)=\sqrt{5} l_{5, n}^{2}\left(\frac{\sqrt{5} l_{5, n}^{2}+5}{\sqrt{5} l_{5, n}^{2}+1}\right)^{2} \tag{1.4}
\end{equation*}
$$

From (1.3) and (1.4), we have

$$
\begin{equation*}
R^{5}\left(e^{-2 \pi \sqrt{n / 20}}\right)=\sqrt{a^{2}+1}-a \tag{1.5}
\end{equation*}
$$

where

$$
2 a=11+\sqrt{5} l_{5, n}^{\prime 2}\left(\frac{\sqrt{5} l_{5, n}^{\prime 2}-5}{\sqrt{5} l_{5, n}^{\prime 2}-1}\right)^{2}
$$

and

$$
\begin{equation*}
S^{5}\left(e^{-\pi \sqrt{n / 5}}\right)=\sqrt{b^{2}+1}-b \tag{1.6}
\end{equation*}
$$

where

$$
2 b=-11+\sqrt{5} l_{5, n}^{2}\left(\frac{\sqrt{5} l_{5, n}^{2}+5}{\sqrt{5} l_{5, n}^{2}+1}\right)^{2}
$$

Consequently, in order to compute $R\left(e^{-2 \pi \sqrt{n / 20}}\right)$ and $S\left(e^{-\pi \sqrt{n / 5}}\right)$, it suffices to evaluate $l_{5, n}^{\prime 2}$ and $l_{5, n}^{2}$, respectively. Thus, in this paper, we employ theta-function identities involving $l_{5, n}, l_{5, n}^{\prime}$, and $l_{5,4 n}^{\prime}$ to find some new explicit values of the RogersRamanujan continued fraction.

2. Evaluations of $l_{5, n}$ AND $l_{5, n}^{\prime}$

In this section, we compute $l_{5, n}^{2}$ and $l_{5, n}^{2}$ for some positive rational numbers n to evaluate $R\left(e^{-2 \pi \sqrt{n / 20}}\right)$ and $S\left(e^{-\pi \sqrt{n / 5}}\right)$. We begin by recalling the known values of $l_{5,3}, l_{5,1 / 3}, l_{5,9}$, and $l_{5,1 / 9}$ in [14] which will play key roles in evaluating the Rogers-Ramanujan continued fraction later on.

Lemma 2.1 ([14, Theorem 4.8]). We have
(i) $l_{5,3}=\sqrt{2+\sqrt{5}}$,
(ii) $l_{5,1 / 3}=\sqrt{-2+\sqrt{5}}$,
(iii) $l_{5,9}=\frac{1+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$,
(iv) $l_{5,1 / 9}=\frac{\sqrt{5}-\sqrt{3}}{1+\sqrt{3}}$.

Note that the values of (i) and (ii) in Lemma 2.1 were given in [14] as follow:

$$
l_{5,3}=(38+17 \sqrt{5})^{1 / 6} \quad \text { and } \quad l_{5,1 / 3}=(-38+17 \sqrt{5})^{1 / 6} .
$$

We now need a couple of theta-function identities: one shows a relation between $l_{5, n}^{\prime}$ and $l_{5,4 n}^{\prime}$ and the other shows a relation between $l_{5, n}^{\prime}$ and $l_{5, n}$ for any positive rational number n.

Lemma 2.2 ([7, Corollary 3.8]). For every positive real number n, we have

$$
\begin{equation*}
\sqrt{5}\left(l_{5, n}^{\prime 2}+\frac{1}{l_{5, n}^{\prime 2}}\right)=\left(\frac{l_{5, n}^{\prime}}{l_{5,4 n}^{\prime}}\right)^{2}+\left(\frac{l_{5,4 n}^{\prime}}{l_{5, n}^{\prime}}\right)^{2}+4 \tag{2.1}
\end{equation*}
$$

Identity (2.1) follows from a modular equation of degree 5 in $[7]$ such as $P^{2}+\frac{5}{P^{2}}=$ $\left(\frac{P}{Q}\right)^{2}+\left(\frac{Q}{P}\right)^{2}+4$, where $P=\frac{\psi(q)}{q^{1 / 2} \psi\left(q^{5}\right)}$ and $Q=\frac{\psi\left(q^{2}\right)}{q \psi\left(q^{10}\right)}$.
Lemma 2.3 ([7, Corollary 3.12]). For every positive real number n, we have

$$
\begin{equation*}
\left(l_{5, n}^{\prime 2}-l_{5, n}^{2}-\sqrt{5}\right)\left(\frac{1}{l_{5, n}^{2}}-\frac{1}{l_{5, n}^{2}}-\sqrt{5}\right)=1 \tag{2.2}
\end{equation*}
$$

Identity (2.2) follows from a modular equation of degree 5 in [7] such as

$$
\left(P^{2}-Q^{2}-5\right)\left(\frac{1}{P^{2}}-\frac{1}{Q^{2}}-1\right)=1
$$

where $P=\frac{\psi(q)}{q^{1 / 2} \psi\left(q^{5}\right)}$ and $Q=\frac{\psi(-q)}{q^{1 / 2} \psi\left(-q^{5}\right)}$.
We are in position to evaluate $l_{5, n}^{2}$ for $n=3, \frac{1}{3}, \frac{3}{4}, \frac{1}{12}, \frac{3}{16}$, and $\frac{1}{48}$.
Theorem 2.4. We have
(i) $l_{5,3}^{2}=\frac{1}{2}(2+\sqrt{3})(1+\sqrt{5})$,
(ii) $l_{5,1 / 3}^{\prime 2}=\frac{1}{2}(2+\sqrt{3})(-1+\sqrt{5})$,
(iii) $l_{5,3 / 4}^{\prime 2}=\frac{4+\sqrt{2}+\sqrt{30}}{2-\sqrt{3}+\sqrt{15}}$,
(iv) $l_{5,1 / 12}^{\prime 2}=\frac{4-\sqrt{2}+\sqrt{30}}{-2+\sqrt{3}+\sqrt{15}}$.
(v) $l_{5,3 / 16}^{\prime 2}=\frac{4(2+\sqrt{10})+2 \sqrt{12+33 \sqrt{10}+\sqrt{270(13-4 \sqrt{10}})}}{17+17 \sqrt{2}+9 \sqrt{3}-7 \sqrt{5}+9 \sqrt{6}-5 \sqrt{10}-3 \sqrt{15}-3 \sqrt{30}}$,
(vi) $l_{5,1 / 48}^{\prime 2}=\frac{4(2+\sqrt{10})+2 \sqrt{12+33 \sqrt{10}-\sqrt{270(13-4 \sqrt{10})}}}{-17+17 \sqrt{2}-9 \sqrt{3}-7 \sqrt{5}+9 \sqrt{6}+5 \sqrt{10}-3 \sqrt{15}+3 \sqrt{30}}$.

Proof. For (i), let $n=3$ in (2.2). Putting $l_{5,3}^{\prime 2}=x$ and $l_{5,3}=\sqrt{2+\sqrt{5}}$ in Lemma 2.1(i), we find that

$$
2 x^{2}-4(1+\sqrt{5}) x+3+\sqrt{5}=0
$$

Solving the equation for x and using $x>1$, we complete the proof.
For (iii), let $n=\frac{3}{4}$ in (2.1). Putting $l_{5,3 / 4}^{\prime 2}=x$ and $l_{5,3}^{\prime 2}=\frac{1}{2}(2+\sqrt{3})(1+\sqrt{5})$ obtained in (i), we deduce that

$$
(2-\sqrt{3}+\sqrt{15}) x^{2}-8 x-2-\sqrt{3}-\sqrt{15}=0
$$

Solving the last equation for x and using $x>1$, we complete the proof.
The proofs of (ii), (iv), (v), and (vi) are similar to those of (i) or (iii).
Remark 1. Letting $n=\frac{3}{64}$ and $\frac{1}{192}$ in (2.1) and using the value $l_{5,3 / 16}^{\prime 2}$ and $l_{5,1 / 48}^{\prime 2}$ in Theorem 2.4(v) and (vi), respectively, we can also evaluate $l_{5,3 / 64}^{\prime 2}$ and $l_{5,1 / 192}^{\prime 2}$. Hence, by the same argument, we can evaluate $l_{5,3 / 4^{m}}^{2}$ and $l_{5,1 / 3 \cdot 4^{m}}^{2}$ for every nonnegative integer m.

We now evaluate $l_{5,3 / 4}^{2}$ and $l_{5,1 / 12}^{2}$.
Theorem 2.5. We have
(i) $l_{5,3 / 4}^{2}=\frac{4+\sqrt{2}-5 \sqrt{3}-2 \sqrt{5}+\sqrt{15}+\sqrt{30}}{4-2 \sqrt{3}+2 \sqrt{15}}$

$$
+\frac{\sqrt{26-84 \sqrt{2}+18 \sqrt{3}+63 \sqrt{5}-47 \sqrt{6}-\sqrt{10}+38 \sqrt{15}}}{(2+\sqrt{3}) \sqrt{2+6 \sqrt{5}+4 \sqrt{15}}}
$$

(ii) $l_{5,1 / 12}^{2}=\frac{4-\sqrt{2}-5 \sqrt{3}+2 \sqrt{5}-\sqrt{15}+\sqrt{30}}{-4+2 \sqrt{3}+2 \sqrt{15}}$

$$
+\frac{\sqrt{-26-84 \sqrt{2}-18 \sqrt{3}+63 \sqrt{5}-47 \sqrt{6}+\sqrt{10}+38 \sqrt{15}}}{(2+\sqrt{3}) \sqrt{-2+6 \sqrt{5}+4 \sqrt{15}}}
$$

Proof. The results follow directly from (2.2) and Theorem 2.4(ii) and (iv) with the help of Mathematica.

Remark 2. Letting $n=\frac{3}{16}$ and $\frac{1}{48}$ in (2.2) and using the value $l_{5,3 / 16}^{\prime 2}$ and $l_{5,1 / 48}^{\prime 2}$ in Theorem 2.4(v) and (vi), respectively, we can also evaluate $l_{5,3 / 16}^{2}$ and $l_{5,1 / 48}^{2}$. By the same argument as before, we are able to evaluate $l_{5,3 / 4^{m}}^{2}$ and $l_{5,1 / 3 \cdot 4^{m}}^{2}$ for every positive integer m.

We now evaluate $l_{5, n}^{\prime 2}$ for $n=9, \frac{9}{4}, \frac{1}{9}$, and $\frac{1}{36}$.

Theorem 2.6. We have
(i) $l_{5,9}^{\prime 2}=(2+\sqrt{3})(2+\sqrt{5}+2 \sqrt{2+\sqrt{5}})$,
(ii) $l_{5,9 / 4}^{\prime 2}=\frac{(2+\sqrt{3})(5+2 \sqrt{2}+\sqrt{5}+\sqrt{6+6 \sqrt{5}})}{\sqrt{2}(-2+\sqrt{5}+\sqrt{15}+2 \sqrt{2+\sqrt{5}})}$,
(iii) $l_{5,1 / 9}^{2}=(2-\sqrt{3})(2+\sqrt{5}+2 \sqrt{2+\sqrt{5}})$,
(iv) $l_{5,1 / 36}^{\prime 2}=\frac{(2-\sqrt{3})(5+2 \sqrt{2}+\sqrt{5}-\sqrt{6+6 \sqrt{5}})}{\sqrt{2}(-2+\sqrt{5}-\sqrt{15}+2 \sqrt{2+\sqrt{5}})}$.

Proof. For (i), let $n=3$ in (2.2). Putting $l_{5,9}^{\prime 2}=x$ and $l_{5,9}=\frac{1+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$ in Lemma 2.1(iii), we find that

$$
x^{2}-2(2+\sqrt{5}) x+2+\sqrt{3}=0
$$

Solving the equation for x and using $x>1$, we complete the proof.
For (ii), let $n=\frac{9}{4}$ in (2.1). Putting $l_{5,9 / 4}^{\prime 2}=x$ and the value $l_{5,9}^{\prime 2}$ obtained in (i), we deduce that

$$
\frac{-2+\sqrt{5}+\sqrt{15}+2 \sqrt{2+\sqrt{5}}}{2+\sqrt{3}} x^{2}-4 x-\frac{2-\sqrt{5}+\sqrt{15}+2 \sqrt{2+\sqrt{5}}}{2-\sqrt{3}}=0 .
$$

Solve the last equation for x with the help of Mathematica and use $x>1$ to complete the proof.

The proofs of (iii) and (iv) are similar to those of (i) and (ii), respectively.
Remark 3. Letting $n=\frac{9}{16}$ and $\frac{1}{144}$ in (2.1) and using the value of $l_{5,9 / 4}^{\prime 2}$ and $l_{5,1 / 36}^{\prime 2}$ in Theorem 2.6(ii) and (iv), respectively, we can also evaluate $l_{5,9 / 16}^{\prime 2}$ and $l_{5,1 / 144}^{\prime 2}$. Hence we can evaluate $l_{5,9 / 4^{m}}^{2}$ and $l_{5,1 / 9 \cdot 4^{m}}^{2}$ for every nonnegative integer m.

We end this section by evaluating $l_{5,9 / 4}^{2}$ and $l_{5,1 / 36}^{2}$.

Theorem 2.7. We have

(i) $l_{5,9 / 4}^{2}=\frac{(c-4) \sqrt{c}+\sqrt{(c-4)\left(c^{2}+4\right)}}{2 \sqrt{5 c}}$, where

$$
c=-1+\frac{\sqrt{5}(2+\sqrt{3})(5+2 \sqrt{2}+\sqrt{5}+2 \sqrt{6+6 \sqrt{5}})}{\sqrt{2}(-2+\sqrt{5}+\sqrt{15}+2 \sqrt{2+\sqrt{5}})}
$$

(ii) $l_{5,1 / 36}^{2}=\frac{(c-4) \sqrt{c}+\sqrt{(c-4)\left(c^{2}+4\right)}}{2 \sqrt{5 c}}$, where

$$
c=-1+\frac{\sqrt{5}(2-\sqrt{3})(5+2 \sqrt{2}+\sqrt{5}-2 \sqrt{6+6 \sqrt{5}})}{\sqrt{2}(-2+\sqrt{5}-\sqrt{15}+2 \sqrt{2+\sqrt{5}})}
$$

Proof. The results follow directly from (2.2) and Theorem 2.6(ii) and (iv) with the help of Mathematica.

Remark 4. As mentioned in Remark 3, if we evaluate $l_{5,9 / 16}^{\prime 2}$ and $l_{5,1 / 144}^{\prime 2}$, then we have $l_{5,9 / 16}^{2}$ and $l_{5,1 / 144}^{2}$. Thus we are able to compute $l_{5,9 / 4^{m}}^{2}$ and $l_{5,1 / 9 \cdot 4^{m}}^{2}$ for every positive integer m.

3. Evaluations of $R(q)$ and $S(q)$

In view of Remark 1, we can evaluate $R\left(e^{-2 \pi \sqrt{n}}\right)$ for $n=\frac{3}{5 \cdot 4^{m}}$ and $\frac{1}{15 \cdot 4^{m}}$, where m is any positive integer. We evaluate the cases for $m=1,2$, and 3 .

Theorem 3.1. We have

$$
\begin{aligned}
& \text { (i) } R^{5}\left(e^{-2 \pi \sqrt{3 / 20}}\right) \\
& =\frac{57-50 \sqrt{3}+16 \sqrt{5}-36 \sqrt{15}+\sqrt{15(2105-760 \sqrt{3}+842 \sqrt{5}-380 \sqrt{15})}}{1+3 \sqrt{5}+2 \sqrt{15}}
\end{aligned}
$$

(ii) $R^{5}\left(e^{-2 \pi \sqrt{1 / 60}}\right)$

$$
=\frac{57-50 \sqrt{3}-16 \sqrt{5}+36 \sqrt{15}-\sqrt{15(2105-760 \sqrt{3}-842 \sqrt{5}+380 \sqrt{15})}}{1-3 \sqrt{5}-2 \sqrt{15}}
$$

(iii) $R^{5}\left(e^{-2 \pi \sqrt{3 / 80}}\right)=\sqrt{a^{2}+1}-a$, where

$$
a=\frac{11}{2}+\frac{5 \sqrt{5}}{2}\left(\frac{4+\sqrt{2}+\sqrt{30}}{2-\sqrt{3}+\sqrt{15}}\right)\left(\frac{4+\sqrt{2}-5 \sqrt{3}-2 \sqrt{5}+\sqrt{15}+\sqrt{30}}{2-\sqrt{3}-4 \sqrt{5}-5 \sqrt{6}-\sqrt{10}+\sqrt{15}}\right)^{2}
$$

(iv) $R^{5}\left(e^{-2 \pi \sqrt{1 / 240}}\right)=\sqrt{a^{2}+1}-a$, where

$$
a=\frac{11}{2}-\frac{5 \sqrt{5}}{2}\left(\frac{4-\sqrt{2}+\sqrt{30}}{2-\sqrt{3}-\sqrt{15}}\right)\left(\frac{4-\sqrt{2}-5 \sqrt{3}+2 \sqrt{5}-\sqrt{15}+\sqrt{30}}{2-\sqrt{3}+4 \sqrt{5}+5 \sqrt{6}-\sqrt{10}-\sqrt{15}}\right)^{2}
$$

(v) $R^{5}\left(e^{-2 \pi \sqrt{3 / 320}}\right)=\frac{-2+\left(a^{2}+2 a+2\right)\left(\sqrt{a^{2}+1}-a\right)}{a^{2}}$, where
$a=-\frac{1}{2}+\frac{10 \sqrt{2}+4 \sqrt{5}+\sqrt{5} \sqrt{12+33 \sqrt{10}+\sqrt{270(13-4 \sqrt{10})}}}{17+17 \sqrt{2}+9 \sqrt{3}-7 \sqrt{5}+9 \sqrt{6}-5 \sqrt{10}-3 \sqrt{15}-3 \sqrt{30}}$,
(vi) $R^{5}\left(e^{-2 \pi \sqrt{1 / 960}}\right)=\frac{-2+\left(a^{2}+2 a+2\right)\left(\sqrt{a^{2}+1}-a\right)}{a^{2}}$, where

$$
a=-\frac{1}{2}+\frac{10 \sqrt{2}+4 \sqrt{5}+\sqrt{5} \sqrt{12+33 \sqrt{10}-\sqrt{270(13-4 \sqrt{10})}}}{-17+17 \sqrt{2}-9 \sqrt{3}-7 \sqrt{5}+9 \sqrt{6}+5 \sqrt{10}-3 \sqrt{15}+3 \sqrt{30}}
$$

Proof. The results follow directly from (1.5) and Theorem 2.4 with the help of Mathematica.

In view of Remark 2, we can evaluate $S\left(e^{-\pi \sqrt{n}}\right)$ for $n=\frac{3}{5 \cdot 4^{m-1}}$ and $\frac{1}{15 \cdot 4^{m-1}}$, where m is any positive integer. We evaluate the cases for $m=1$ and 2 .

Theorem 3.2. We have
(i) $S^{5}\left(e^{-\pi \sqrt{3 / 5}}\right)=\frac{1}{4}(-3-5 \sqrt{5}+\sqrt{30(5+\sqrt{5})})$,
(ii) $S^{5}\left(e^{-\pi \sqrt{1 / 15}}\right)=\frac{1}{4}(-3+5 \sqrt{5}+\sqrt{30(5-\sqrt{5})})$,
(iii) $S^{5}\left(e^{-\pi \sqrt{3 / 20}}\right)=\frac{2+\left(b^{2}-2 b+2\right)\left(\sqrt{b^{2}+1}-b\right)}{b^{2}}$, where

$$
\begin{aligned}
b= & \frac{1}{2}+\frac{\sqrt{5}(4+\sqrt{2}-5 \sqrt{3}-2 \sqrt{5}+\sqrt{15}+\sqrt{30})}{4(2-\sqrt{3}+\sqrt{15})} \\
& +\frac{\sqrt{5(26-84 \sqrt{2}+18 \sqrt{3}+63 \sqrt{5}-47 \sqrt{6}-\sqrt{10}+38 \sqrt{15}})}{(4+2 \sqrt{3}) \sqrt{2+6 \sqrt{5}+4 \sqrt{15}}}
\end{aligned}
$$

(iv) $S^{5}\left(e^{-\pi \sqrt{1 / 60}}\right)=\frac{2+\left(b^{2}-2 b+2\right)\left(\sqrt{b^{2}+1}-b\right)}{b^{2}}$, where

$$
\begin{aligned}
b= & \frac{1}{2}+\frac{\sqrt{5}(4-\sqrt{2}-5 \sqrt{3}+2 \sqrt{5}-\sqrt{15}+\sqrt{30})}{4(-2+\sqrt{3}+\sqrt{15})} \\
& +\frac{\sqrt{5(-26-84 \sqrt{2}-18 \sqrt{3}+63 \sqrt{5}-47 \sqrt{6}+\sqrt{10}+38 \sqrt{15})}}{(4+2 \sqrt{3}) \sqrt{-2+6 \sqrt{5}+4 \sqrt{15}}} .
\end{aligned}
$$

Proof. The results are immediate consequences of (1.6), Lemma 2.1(i) and (ii), and Theorem 2.5 with the help of Mathematica.

See [13, Corollary 4.12(i) and (ii)] for alternative proofs of Theorem 3.2(i) and (ii), respectively.

In view of Remark 3, we are able to evaluate $R\left(e^{-2 \pi \sqrt{n}}\right)$ for $n=\frac{9}{5 \cdot 4^{m}}$ and $\frac{1}{45 \cdot 4^{m}}$, where m is any positive integer. We evaluate the cases for $m=1$ and 2 .

Theorem 3.3. We have
(i) $R^{5}\left(e^{-2 \pi \sqrt{9 / 20}}\right)=\sqrt{a^{2}+1}-a$, where
$a=\frac{11}{2}+\frac{5}{2}\left(\frac{5+14 \sqrt{5}-10 \sqrt{2+5 \sqrt{5}}}{54-25 \sqrt{3}+16 \sqrt{5}-12 \sqrt{15}}\right)$,
(ii) $R^{5}\left(e^{-2 \pi \sqrt{1 / 180}}\right)=\sqrt{a^{2}+1}-a$, where

$$
a=\frac{11}{2}+\frac{5}{2}\left(\frac{5+14 \sqrt{5}-10 \sqrt{2+5 \sqrt{5}}}{54+25 \sqrt{3}+16 \sqrt{5}+12 \sqrt{15}}\right)
$$

(iii) $R^{5}\left(e^{-2 \pi \sqrt{9 / 80}}\right)=\frac{-2+\left(a^{2}+2 a+2\right)\left(\sqrt{a^{2}+1}-a\right)}{a^{2}}$, where

$$
\begin{gathered}
a=-\frac{1}{2}+\frac{\sqrt{5}(2+\sqrt{3})(5+2 \sqrt{2}+\sqrt{5}+\sqrt{6+6 \sqrt{5}})}{2 \sqrt{2}(-2+\sqrt{5}+\sqrt{15}+2 \sqrt{2+\sqrt{5}})} \\
\text { (iv) } R^{5}\left(e^{-2 \pi \sqrt{1 / 720}}\right)=\frac{-2+\left(a^{2}+2 a+2\right)\left(\sqrt{a^{2}+1}-a\right)}{a^{2}}, \text { where } \\
a=-\frac{1}{2}+\frac{\sqrt{5}(2-\sqrt{3})(5+2 \sqrt{2}+\sqrt{5}-\sqrt{6+6 \sqrt{5}})}{2 \sqrt{2}(-2+\sqrt{5}-\sqrt{15}+2 \sqrt{2+\sqrt{5}})}
\end{gathered}
$$

Proof. The results follow directly from (1.5) and Theorem 2.4. We used Mathematica to verify (i)-(iv).

In view of Remark 4, we can evaluate $S\left(e^{-\pi \sqrt{n}}\right)$ for $n=\frac{9}{5 \cdot 4^{m-1}}$ and $\frac{1}{45 \cdot 4^{m-1}}$, where m is any positive integer. We evaluate the cases for $m=1$ and 2 .

Theorem 3.4. We have
(i) $S^{5}\left(e^{-\pi \sqrt{9 / 5}}\right)$

$$
=\frac{22-65 \sqrt{5}-32 \sqrt{15}+2 \sqrt{5(1850+1040 \sqrt{3}-143 \sqrt{5}-70 \sqrt{15})}}{4+\sqrt{15}}
$$

(ii) $S^{5}\left(e^{-\pi \sqrt{1 / 45}}\right)$

$$
=\frac{22-65 \sqrt{5}+32 \sqrt{15}+2 \sqrt{5(1850-1040 \sqrt{3}-143 \sqrt{5}+70 \sqrt{15})}}{4-\sqrt{15}}
$$

(iii) $S^{5}\left(e^{-\pi \sqrt{9 / 20}}\right)=\frac{2+\left(b^{2}-2 b+2\right)\left(\sqrt{b^{2}+1}-b\right)}{b^{2}}$, where
$b=-\frac{1}{2}+\frac{c \sqrt{c}+\sqrt{(c-4)\left(c^{2}+4\right)}}{4 \sqrt{c}}$ and
$c=-1+\frac{\sqrt{5}(2+\sqrt{3})(5+2 \sqrt{2}+\sqrt{5}+\sqrt{6+6 \sqrt{5}})}{\sqrt{2}(-2+\sqrt{5}+\sqrt{15}+2 \sqrt{2+\sqrt{5}})}$,
(iv) $S^{5}\left(e^{-\pi \sqrt{1 / 180}}\right)=\frac{2+\left(b^{2}-2 b+2\right)\left(\sqrt{b^{2}+1}-b\right)}{b^{2}}$, where
$b=-\frac{1}{2}+\frac{c \sqrt{c}+\sqrt{(c-4)\left(c^{2}+4\right)}}{4 \sqrt{c}}$ and $c=-1+\frac{\sqrt{5}(2-\sqrt{3})(5+2 \sqrt{2}+\sqrt{5}-\sqrt{6+6 \sqrt{5}})}{\sqrt{2}(-2+\sqrt{5}-\sqrt{15}+2 \sqrt{2+\sqrt{5}})}$.

Proof. The results follow from (1.6), Lemma 2.1(iii) and (iv), and Theorem 2.7. We used Mathematica to verify (i)-(iv).

References

1. B.C. Berndt: Number Theory in the Spirit of Ramanujan. American Mathematical Society, 2006.
2. B.C. Berndt: Ramanujan's Notebooks, Part III. Springer-Verlag, New York, 1991.
3. B.C. Berndt: Ramanujan's Notebooks, Part IV. Springer-Verlag, New York, 1994.
4. B.C. Berndt \& H.H. Chan: Some values for the Rogers-Ramanujan continued fraction. Can. J. Math. 47 (1995), no. 5, 897-914.
5. B.C. Berndt, H.H. Chan \& L.C Zhang: Explicit evaluations of the Rogers-Ramanujan continued fraction. J. Reine Angew. Math. 480 (1996), 141-159.
6. H.H. Chan: On Ramanujan's cubic continued fraction. Acta Arith. 73 (1995), 343-355.
7. D.H. Paek \& J. Yi: On some modular equations of degree 5 and their applications. Bull. Korean Math. Soc. 50 (2013), no. 4, 1315-1328.
8. K.G. Ramanathan: On Ramanujan's continued fraction. Acta Arith. 43 (1984), 209226.
9. K.G. Ramanathan: On the Rogers-Ramanujan continued fraction. Proc. Indian Acad. Sci. Math. Sci. 93 (1984), 67-77.
10. K.G. Ramanathan: Ramanujan's continued fraction. Indian J. Pure Appl. Math. 16 (1985), 695-724.
11. K.G. Ramanathan: Some applications of Kronecker's limit formula. J. Indian Math. Soc. 52 (1987), 71-89.
12. N. Saikia: Some new general theorems for the explicit evaluations of the RogersRamanujan continued fraction. Comput. Methods Funct. Theory 13 (2013), 597-611.
13. J. Yi: Evaluations of the Rogers-Ramanujan continued fraction $R(q)$ by modular equations. Acta Arith. 97 (2001), 103-127.
14. J. Yi, Y. Lee \& D.H. Paek: The explicit formulas and evaluations of Ramanujan's theta-function ψ. J. Math. Anal. Appl. 321 (2006), 157-181.

Dae Hyun Paek, Department of Mathematics Education, Busan National University of Education, Busan 47503, Korea
Email address: paek@bnue.ac.kr

[^0]: Received by the editors July 23, 2021. Accepted September 01, 2021.
 2010 Mathematics Subject Classification. Primary: 11F27, 33C90; Secondary: 11F20, 33C05, 33C75.
 Key words and phrases. theta-function, modular equation, theta-function identity, RogersRamanujan continued fraction.
 This work is supported by a research grant from the Busan National University of Education in 2021.

