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FUZZY COMPLETE LATTICES AND DISTANCE SPACES

Jung Mi Koa and Yong Chan Kimb, ∗

Abstract. In this paper, we introduce the notions of fuzzy join (resp. meet) com-
plete lattices and distance spaces in complete co-residuated lattices. Moreover, we
investigate the relations between Alexandrov pretopologies (resp. precotopologies)
and fuzzy join (resp. meet) complete lattices, respectively. We give their examples.

1. Introduction

As an algebraic structure for many valued logic, a complete residuated lattice is an

important mathematical tool [1-4, 6-11, 15, 16]. For an extension of classical rough

sets introduced by Pawlak [12, 13], many researchers [1, 6-11] developed L-lower

and L-upper approximation operators in complete residuated lattices. By using the

concepts of lower and upper approximation operators, fuzzy concepts, information

systems and decision rules are investigated in complete residuated lattices [1-4, 6-11,

15, 16].

Zhang et al. [17, 18] introduced the notion of fuzzy complete lattices using fuzzy

partially order on a frame as generalizations of usual complete lattices. Based on

residuated lattices as an extension of frame, Zhang [19] introduced the notions of

partially orders,join, meet and fuzzy completeness.

Kim et al. [7-10] studied the properties of fuzzy join and meet completeness,

L-fuzzy upper and lower approximation spaces and Alexandrov L-topologies with

fuzzy partially ordered spaces in complete residuated lattices. Zheng and Wang [20]

introduced complete co-residuated lattices. By using this concepts, lower and upper
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approximation operators, fuzzy rough sets and information systems are investigated

[6].

In this paper, we introduce the concepts of fuzzy join and meet complete lat-

tices using distance spaces instead of fuzzy partially ordered spaces [19] in complete

co-residuated lattices. We show that fuzzy join (resp. meet) complete lattices and

Alexandrov pretopologies (resp. precotopologies) are equivalent, respectively. More-

over, their properties and examples are investigated.

2. Preliminaries

Definition 2.1 ([6, 20]). An algebra (L,∧,∨,⊕, 0, 1) is called a complete co-residuated

lattice if it satisfies the following conditions:

(Q1) L = (L,≤,∨,∧, 0, 1) is a complete lattice where 0 is the bottom element

and 1 is the top element.

(Q2) a = a⊕ 0, a⊕ b = b⊕ a and a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a, b, c ∈ L.

(Q3) (
∧

i∈Γ ai)⊕ b =
∧

i∈Γ(ai ⊕ b).

Remark 2.2. (1) An infinitely distributive lattice (L,≤,∨,∧,⊕ = ∨, 0, 1) is a com-

plete co-residuated lattice. In particular, the unit interval ([0, 1],≤,∨,∧,⊕ = ∨, 0, 1)
is a complete co-residuated lattice [4,15].

(2) The unit interval with a right-continuous t-conorm ⊕, ([0, 1],≤,⊕), is a com-

plete co-residuated lattice [1,4,15].

(3) Let (L,≤,⊕) be a complete co-residuated lattice. For each x, y ∈ L, we define

x⊖ y =
∧

{z ∈ L | x⊕ z ≥ y}.

Then (x⊕ y) ≥ z iff x ≥ (y ⊖ z).

(4) ([0,∞],≤,∨,⊕ = +,∧,∞, 0) is a commutative unital co-quantale where

x⊖ y =
∧
{z ∈ [0,∞] | x+ z ≥ y}

=
∧
{z ∈ [0,∞] | z ≥ −x+ y} = (y − x) ∨ 0,

∞+ a = a+∞ = ∞,∀a ∈ [0,∞],∞ → ∞ = 0.

In this paper, we assume (L,∧,∨,⊕,⊖, 0, 1) is a complete co-residuated lattice.

For α ∈ L,A ∈ LX , we denote (α ⊖ A), (α ⊕ A), αX ∈ LX as (α ⊖ A)(x) = α ⊖
A(x), (α⊕A)(x) = α⊕A(x), αX(x) = α.

Lemma 2.3. Let (L,∧,∨,⊕,⊖, 0, 1) be a complete co-residuated lattice. For each

x, y, z, xi, yi ∈ L, we have the following properties.
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(1) If y ≤ z, (x⊕ y) ≤ (x⊕ z), then x⊖ y ≤ x⊖ z and z ⊖ x ≤ y ⊖ x.

(2) x⊖ (
∨

i∈Γ yi) =
∨

i∈Γ(x⊖ yi) and (
∧

i∈Γ xi)⊖ y =
∨

i∈Γ(xi ⊖ y).

(3) x⊖ (
∧

i∈Γ yi) ≤
∧

i∈Γ(x⊖ yi).

(4) (
∨

i∈Γ xi)⊖ y ≤
∧

i∈Γ(xi ⊖ y).

(5) x⊕ (x⊖ y) ≥ y, (x⊖ y)⊖ y ≤ x and (x⊖ y)⊕ (y ⊖ z) ≥ x⊖ z.

(6) (x⊕ y)⊖ z = x⊖ (y ⊖ z) = y ⊖ (x⊖ z).

(7) x⊖ y ≥ (x⊕ z)⊖ (y ⊕ z), x⊖ y ≥ (y ⊖ z)⊖ (x⊖ z) and (x⊕ y)⊖ (z ⊕ w) ≤
(x⊖ z)⊕ (y ⊖ w).

(8) x⊖ x = 0, 0⊖ x = x. Moreover, x⊖ y = 0 iff x ≥ y.

Proof. (1) Since y = y∧z, x⊕y = x⊕(y∧z) = (x⊕y)∧(x⊕z). Then (x⊕y) ≤ (x⊕z).

Since y ≤ z ≤ x ⊕ (x ⊖ z), x ⊖ y ≤ x ⊖ z. Since x ≤ y ⊕ (y ⊖ x) ≤ z ⊕ (y ⊖ x),

z ⊖ x ≤ y ⊖ x.

(2) By (1), x⊖ (
∨

i∈Γ yi) ≥
∨

i∈Γ(x⊖ yi). Since x⊕
∨

i∈Γ(x⊖ yi) ≥
∨

i∈Γ(x⊕ (x⊖
yi)) ≥

∨
i∈Γ yi, x⊖ (

∨
i∈Γ yi) ≤

∨
i∈Γ(x⊖ yi).

By (1), (
∧

i∈Γ xi)⊖ y ≥
∨

i∈Γ(xi⊖ y). Since (
∧

i∈Γ xi)⊕
∨

i∈Γ(xi⊖ y) ≥
∧

i∈Γ(xi⊕
(xi ⊖ y)) ≥ y, (

∧
i∈Γ xi)⊖ y ≤

∨
i∈Γ(xi ⊖ y).

(3) and (4) are easily proved from (1).

(5) Since x ⊖ y ≥ x ⊖ y, x ⊕ (x ⊖ y) ≥ y. Moreover, x ≥ (x ⊖ y) ⊖ y. Since

x⊕ (x⊖ y)⊕ (y ⊖ z) ≥ y ⊕ (y ⊖ z) ≥ z, (x⊖ y)⊕ (y ⊖ z) ≥ x⊖ z.

(6) We have x ⊕ y ⊕ ((x ⊕ y) ⊖ z) ≥ z if and only f x ⊕ ((x ⊕ y) ⊖ z) ≥ y ⊖ z.

Thus (x⊕ y)⊖ z ≥ x⊖ (y ⊖ z).

Since x⊕ y ⊕ (x⊖ (y ⊖ z)) ≥ y ⊕ (y ⊖ z) ≥ z, x⊖ (y ⊖ z) ≥ (x⊕ y)⊖ z.

Similarly, (x⊕ y)⊖ z = y ⊖ (x⊖ z).

(7) Since (x⊕z)⊕(x⊖y) ≥ y⊕z, x⊖y ≥ (x⊕z)⊖(y⊕z). Since x⊕(x⊖y)⊕(y⊖z) ≥
z, x⊖ y ≥ (y ⊖ z)⊖ (x⊖ z).

Since z ⊕ w ≤ x⊕ (x⊖ z)⊕ y ⊕ (y ⊖ w), (x⊕ y)⊖ (z ⊕ w) ≤ (x⊖ z)⊕ (y ⊖ w).

(8) For x ∈ L, x⊖ x =
∧
{z ∈ L | x⊕ z ≥ x} = 0 and 0⊖ x =

∧
{z ∈ L | 0⊕ z ≥

x} = x. �

Definition 2.4. Let (L,∧,∨,⊕,⊖, 0, 1) be a complete co-residuated lattice. Let X

be a set. A function dX : X ×X → L is called a distance function if it satisfies the

following conditions:

(M1) dX(x, x) = 0 for all x ∈ X,

(M2) dX(x, y)⊕ dX(y, z) ≥ dX(x, z), for all x, y, z ∈ X,

(M3) if dX(x, y) = dX(y, x) = 0, then x = y.
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The pair (X, dX) is called a distance space.

Remark 2.5. (1) We define a distance function dX : X×X → [0,∞]. Then (X, dX)

is called a non-symmetric pseudo-metric space.

(2) Let (L,∧,∨,⊕,⊖, 0, 1) be a complete co-residuated lattice. Define a function

dL : L × L → L as dL(x, y) = x ⊖ y. By Lemma 2.3 (5) and (8), (L, dL) is a

distance space. Moreover, we define a function dLX : LX ×LX → L as dLX (A,B) =∨
x∈X(A(x)⊖B(x)). Then (LX , dLX ) is a distance space.

(3) We define a function d[0,∞]X : [0,∞]X × [0,∞]X → [0,∞] as d[0,∞]X (A,B) =∨
x∈X(A(x) ⊖ B(x)) =

∨
x∈X((B(x) − A(x)) ∨ 0). Then ([0,∞]X , d[0,∞]X ) is a non-

symmetric pseudo-metric space.

(4) If (X, dX) is a distance space and we define a function d−1
X (x, y) = dX(y, x),

then (X, d−1
X ) is a distance space.

(5) Let (L,∧,∨,⊕,⊖, 0, 1) be a complete co-residuated lattice. Let (X, dX) be

a distance space and define (dX ⊎ dX)(x, z) =
∧

y∈X(dX(x, y) ⊕ dX(y, z)) for each

x, z ∈ X. By (M2), (dX ⊎ dX)(x, z) ≥ dX(x, z) and (dX ⊎ dX)(x, z) ≤ dX(x, x) ⊕
dX(x, z) = d(x, z). Hence (dX ⊎ dX) = dX .

(6) If dX is a distance function and d−1
X (x, y) = dX(y, x) for each x, y ∈ X, then

d−1
X is a distance function.

3. Fuzzy Complete Lattices and Distance Spaces

Definition 3.1. Let (X, dX) be a distance space and A ∈ LX .

(1) A point x0 is called a fuzzy join of A, denoted by x0 = ⊔XA, if it satisfies

(J1) A(x) ≥ dX(x0, x),

(J2)
∨

x∈X(A(x)⊖ dX(y, x)) ≥ dX(y, x0).

The pair (X, dX) is called fuzzy join complete if ⊔XA exists for each A ∈ LX .

A point x1 is called a fuzzy meet of A, denoted by x1 = ⊓XA, if it satisfies

(M1) A(x) ≥ dX(x, x1),

(M2)
∨

x∈X(A(x)⊖ dX(x, y)) ≥ dX(x1, y).

The pair (X, dX) is called fuzzy meet complete if ⊓XA exists for each A ∈ LX .

The pair (X, dX) is called fuzzy complete if ⊓XA and ⊔XA exists for each A ∈ LX .

Theorem 3.2. Let (X, dX) be a distance space and Φ ∈ LX .

(1) A point x0 is a fuzzy join of Φ iff
∨

x∈X(Φ(x)⊖ dX(y, x)) = dX(y, x0).

(2) A point x1 is a fuzzy meet of Φ iff
∨

x∈X(Φ(x)⊖ dX(x, y)) = dX(x1, y).
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(3) If ⊔XΦ is a fuzzy join of Φ ∈ LX , then it is unique. Moreover, if ⊓XΦ is a

fuzzy meet of Φ ∈ LX , then it is unique.

Proof (1) Let ⊔XΦ be a fuzzy join of Φ ∈ LX . By (J1), since Φ(x) ≥ dτ (⊔XΦ, x), we

have Φ(x)⊕dX(y,⊔XΦ) ≥ dX(⊔XΦ, x)⊕dX(y,⊔XΦ) ≥ dX(y, x).Hence dX(y,⊔XΦ) ≥∨
x∈X(Φ(x)⊖ dX(y, x)). By (J2), dX(y,⊔XΦ) =

∨
x∈X(Φ(x)⊖ dX(y, x)).

Conversely, dX(y,⊔XΦ) ≥ (Φ(x)⊖ dX(y, x)) if and only if Φ(x) ≥ dX(y,⊔XΦ)⊕
dX(y, x). Put y = ⊔XΦ. Then Φ(x) ≥ dX(⊔XΦ, x).

(2) It is similarly proved as (1).

(3) Let x1, x2 be fuzzy joins of Φ ∈ LX . For all y ∈ X, we have∨
x∈X

(Φ(x)⊖ dX(y, x)) = dX(y, x1) = dX(y, x2).

Put y = x1. Then 0 = dX(x1, x1) = dX(x1, x2). Put y = x2. Then �

Theorem 3.3. Let (X, dX) be a distance space and A,B ∈ LX .

(1) If ⊔XA,⊔XB exist, dLX (A,B) ≥ dX(⊔XB,⊔XA),

(2) If ⊓XA,⊓XB exist, dLX (A,B) ≥ dX(⊓XA,⊓XB).

Proof. (1) For each A,B ∈ LX , dLX (A,B) =
∨

x∈X(A(x) ⊖ B(x)) ≥
∨

x∈X(A(x) ⊖
dX(⊔XB, x)) ≥ dX(⊔XB,⊔XA).

(2) For each A,B ∈ LX , dLX (A,B) =
∨

x∈X(A(x) ⊖ B(x)) ≥
∨

x∈X(A(x) ⊖
dX(x,⊓XB)) ≥ dX(⊓XA,⊓XB). �

Lemma 3.4. Let (X, dX) be a distance space. Then the followings hold.

(1) For each z ∈ X, ⊔XdX(z,−) = z and ⊓XdX(−, z) = z.

(2) For Φ ∈ LX , ⊔XΦ = ⊔X
∧
(Φ(z) ⊕ dX(z,−)) and ⊓XΦ = ⊓X

∧
(Φ(z) ⊕

dX(−, z)).

Proof. (1) Since dX(z, x)⊕ dX(y, z) ≥ dX(y, x),

dX(y, z) ≥
∨
x∈X

(dX(z, x)⊖ dX(y, x)).

From the definition of ⊔XdX(z,−) = z,

dX(x,⊔XdX(z,−)) =
∨

x∈X(dX(z, x)⊖ dX(y, x))
≥ dX(z, z)⊖ dX(y, z) = dX(y, z).

Hence dX(x,⊔XdX(z,−)) =
∨

x∈X(dX(z, x)⊖dX(y, x)) = dX(y, z). Thus ⊔XdX(z,−)

= z. Similarly, dX(⊓XdX(−, z), y) =
∨

x∈X(dX(x, z) ⊖ dX(x, y)) = dX(z, y). Thus

⊓XdX(−, z) = z.
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(2) From the definitions of ⊔X
∧
(Φ(z)⊕ dX(z,−)) and ⊓X

∧
(Φ(z)⊕ dX(−, z)),

dX(y,⊔
∧
(Φ(z)⊕ dX(z,−))) =

∨
x∈X(

∧
z∈X(Φ(z)⊕ dX(z, x))⊖ dX(y, x))

=
∨

x,z∈X(Φ(z)⊖ (dX(z, x)⊖ dX(y, x)) =
∨

z∈X(Φ(z)⊖
∨

x∈X(dX(z, x)⊖ dX(y, x))

=
∨

z∈X(Φ(z)⊖ dX(y, z)) = dX(y,⊔Φ),

dX(⊓
∧
(Φ(z)⊕ dX(−, z)), y) =

∨
x∈X(

∧
z∈X(Φ(z)⊕ dX(x, z))⊖ dX(x, y))

=
∨

x,z∈X(Φ(z)⊖ (dX(x, z)⊖ dX(x, y)) =
∨

z∈X(Φ(z)⊖
∨

x∈X(dX(x, z)⊖ dX(x, y))

=
∨

z∈X(Φ(z)⊖ dX(z, y)) = dX(⊓Φ, y).
�

Theorem 3.5. Let (X, dX) be a distance space. Then the following are equivalent:

(1) ⊔XΦ exists for every Φ ∈ LX .

(2) ⊓XΦ exists for every Φ ∈ LX .

Proof. (1) ⇒ (2). For every Φ ∈ LX and
∨
(Φ(y) ⊖ dX(y,−)) ∈ LX , there exists

z = ⊔X(
∨
(Φ(y)⊖ dX(y,−))). We will show that z = ⊓XΦ.

(M2) By the definition of ⊔X(
∨
(Φ(y)⊖ dX(y,−))), by (J1),∨

(Φ(y)⊖ dX(y, x)) ≥ dX(⊔X(
∨

(Φ(y)⊖ dX(y,−))), x) = dX(z, x).

(M1) Since (Φ(y) ⊖ dX(y, x)) ⊕ Φ(y) ≥ dX(y, x) iff Φ(y) ≥ (Φ(y) ⊖ dX(y, x)) ⊖
dX(y, x),

Φ(y) ≥
∨

x∈X((Φ(y)⊖ dX(y, x))⊖ dX(y, x))
≥

∨
x∈X(

∨
y∈X(Φ(y)⊖ dX(y, x))⊖ dX(y, x))

= dX(y,⊔X(
∨
(Φ(y)⊖ dX(y,−)))) = dX(y, z).

(2) ⇒ (1). For every Ψ ∈ LX and
∨
(Ψ(y) → dX(−, y)) ∈ LX , there exists

w = ⊓X(
∨
(Ψ(y)⊖ dX(−, y))). We will show that z = ⊔XΨ.

(J2) Since w = ⊓X(
∨
(Ψ(y)⊖ dX(−, y))),∨

(Ψ(y)⊖ dX(x, y)) ≥ dX(x,⊓X(
∨

(Ψ(y)⊖ dX(y,−)))) = dX(x,w).

(J1) Since (Ψ(y) ⊖ dX(x, y)) ⊕ Φ(y) ≥ dX(x, y) iff Ψ(y) ≥ (Ψ(y) ⊖ dX(x, y)) ⊖
dX(x, y),

Ψ(y) ≥
∨

x∈X((Ψ(y)⊖ dX(x, y))⊖ dX(x, y))
≥

∨
x∈X(

∨
y∈X(Ψ(y)⊖ dX(x, y))⊖ dX(x, y))

= dX(⊓X(
∨
(Ψ(y)⊖ dX(−, y))), y).

Hence ⊔XΨ = ⊓X(
∨
(Ψ(y)⊖ dX(−, y))) = w. �

Definition 3.6. (1) A subset τ ⊂ LX is called an Alexandrov pretopology on X iff

it satisfies the following conditions:

(O1) if Ai ∈ τ for all i ∈ I, then
∨

i∈I Ai ∈ τ .

(O2) if A ∈ τ and α ∈ L, then α⊖A ∈ τ .
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(2) A subset η ⊂ LX is called an Alexandrov precotopology on X iff it satisfies the

following conditions:

(CO1) if Ai ∈ η for all i ∈ I, then
∧

i∈I Ai ∈ η.

(CO2) if A ∈ η and α ∈ L, then α⊕A ∈ η.

A subset τ ⊂ LX is called an Alexandrov topology on X iff it is both Alexandrov

pretopology and Alexandrov precotopology on X.

Theorem 3.7. Let τ ⊂ LX . Define dτ : τ × τ → L as dτ (A,B) =
∨

x∈X(A(x) ⊖
B(x)). Then the following statements hold.

(1) (τ, dτ ) is a distance space.

(2) ⊔τΦ is a fuzzy join of Φ ∈ Lτ iff
∨

A∈τ (Φ(A)⊖ dτ (B,A)) = dτ (B,⊔τΦ).

(3) ⊓τΦ is a fuzzy meet of Φ ∈ Lτ iff
∨

A∈τ (Φ(A)⊖ dτ (A,B)) = dτ (⊓τΦ, B).

(4) If ⊔τΦ is a fuzzy join of Φ ∈ Lτ , then it is unique. Moreover, if ⊓τΦ is a

fuzzy meet of Φ ∈ Lτ , then it is unique.

Proof. (1) (M1) For each A ∈ τ , dτ (A,A) =
∨

x∈X(A(x)⊖A(x)) = 0.

(M2) By Lemma 2.3(5), dτ (A,B)⊕dτ (B,C) =
∨

x∈X(A(x)⊖B(x))⊕
∨

x∈X(B(x)⊖
C(x)) ≥

∨
x∈X((A(x)⊖B(x))⊕ (B(x)⊖ C(x))) ≥ dτ (A,C), for all A,B,C ∈ τ .

(M3) If dτ (A,B) = dτ (B,A) = 0, by Lemma 2.3(8), A = B. Hence (τ, dτ ) is a

distance space.

(2), (3) and (4) follow from Theorem 3.2 �

Theorem 3.8. Let (X, dX) be a distance space. Then (LX , dLX ) is a complete

lattice.

Proof. For every Φ ∈ LLX
and A ∈ LX , we obtain that ⊓LXΦ(x) =

∧
A∈LX (Φ(A)⊕

A(x)) and ⊔LXΦ(x) =
∨

A∈LX (Φ(A)⊖A(x)), since

dLX (
∧

A∈LX (Φ(A)⊕A(−)), B) =
∨

x∈X(
∧

A∈LX (Φ(A)⊕A(x))⊖B(x))
=

∨
A∈LX (Φ(A)⊖

∨
x∈X(A(x)⊖B(x))) (by Lemma 2.3(6))

=
∨

A∈LX (Φ(A)⊖ dLX (A,B)) = dLX (⊓LXΦ, B),

dLX (B,
∨

A∈LX (Φ(A)⊖A(−))) =
∨

x∈X(B(x)⊖
∨

A∈LX (Φ(A)⊖A(x)))
=

∨
A∈LX (Φ(A)⊖

∨
x∈X(B(x)⊖A(x))) (by Lemma 2.3(6))

=
∨

A∈LX (Φ(A)⊖ dLX (B,A)) = dLX (B,⊔LXΦ).

�

Theorem 3.9. Let τ ⊂ LX . Then the following statements are equivalent:

(1) (τ, dτ ) is fuzzy join complete.

(2) τ is an Alexandrov pretopology on X.
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Proof. (1) ⇒ (2) Since (τ, dτ ) is fuzzy join complete, for each Φ ∈ Lτ , we have

dτ (B,⊔τΦ) =
∨

C∈τ (Φ(C)⊖ dτ (B,C))
=

∨
C∈τ dτ (B,Φ(C)⊖ C) = dτ (B,

∨
C∈τ Φ(C)⊖ C) (by Lemma 2.3(6)).

By Lemma 3.2(4), ⊔τΦ =
∨

C∈τ (Φ(C)⊖ C) ∈ τ .

(O1) Define Φ : τ → L as Φ(A) = α for A ∈ τ and Φ(B) = 1, otherwise. Then

⊔τΦ(x) =
∨

A∈τ (Φ(A)⊖A(x)) = α⊖A(x).

So, ⊔τΦ = α⊖A ∈ τ .

(O2) Let {Ai ∈ τ | i ∈ Γ} be given. Define Φ : τ → L as Φ(Ai) = 0 for i ∈ Γ and

Φ(B) = 1, otherwise. Then

⊔τΦ(x) =
∨

A∈τ (Φ(A)⊖A(x)) =
∨

i∈Γ(0⊖Ai(x)) =
∨

i∈ΓAi(x).

So, ⊔τΦ =
∨

i∈ΓAi ∈ τ .

(2) ⇒ (1) For each Φ ∈ Lτ , by (O1) and (O2),
∨

C∈τ (Φ(C)⊖ C) ∈ τ . Thus,

dτ (B,⊔τΦ) =
∨

C∈τ (Φ(C)⊖ dτ (B,C))
=

∨
C∈τ dτ (B,Φ(C)⊖ C) = dτ (B,

∨
C∈τ Φ(C)⊖ C) (by Lemma 2.3(6)).

By Theorem 3.2 (3), ⊔τΦ is a fuzzy join of Φ. �

Theorem 3.10. Let τ ⊂ LX . Then the following statements are equivalent:

(1) (τ, dτ ) is fuzzy meet complete.

(2) τ is an Alexandrov precotopology on X.

Proof. (1) ⇒ (2) Since (τ, dτ ) is fuzzy meet complete, for each Φ ∈ Lτ , we have

dτ (⊓τΦ, B) =
∨

C∈τ (Φ(C)⊖ dτ (C,B))
=

∨
C∈τ dτ (Φ(C)⊕ C,B) = dτ (

∧
C∈τ (Φ(C)⊕ C), B) (by Lemma 2.3(6)).

By Theorem 3.2(3), ⊓τΦ =
∧

C∈τ (Φ(C)⊕ C) ∈ τ .

(CO1) Define Φ : τ → L as Φ(A) = α for A ∈ τ and Φ(B) = 1, otherwise. Then

⊓τΦ(x) =
∧

A∈τ (Φ(A)⊕A(x)) = α⊕A(x).

So, ⊓τΦ = α⊕A ∈ τ .

(CO2) Let {Ai ∈ τ | i ∈ Γ} be given. Define Φ : τ → L as Φ(Ai) = 0 for i ∈ Γ

and Φ(B) = 1, otherwise. Then

⊓τΦ(x) =
∧

A∈τ (Φ(A)⊕A(x)) =
∧

i∈Γ(0⊕Ai(x)) =
∧

i∈ΓAi(x).

So, ⊓τΦ =
∧

i∈ΓAi ∈ τ .

(2) ⇒ (1) For each Φ ∈ Lτ , by (CO1) and (CO2),
∧

C∈τ Φ(C)⊕ C ∈ τ . Thus,

dτ (⊓τΦ, B) =
∨

C∈τ (Φ(C)⊖ dτ (C,B))
=

∨
C∈τ dτ (Φ(C)⊕ C,B) = dτ (

∧
C∈τ Φ(C)⊕ C,B).
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By Theorem 3.2 (2), ⊓τΦ is a fuzzy meet of Φ. �

Theorem 3.11. Let D : LX → LX be a map. The following statements are equiva-

lent.

(1) dLX (A,B) ≥ dLX (D(A),D(B)) for all A,B ∈ LX .

(2) α⊕D(A) ≥ D(α⊕A) for each α ∈ L,A ∈ LX and D(A) ≤ D(B) for A ≤ B.

(3) D(α⊖A) ≥ α⊖D(A) for each α ∈ L,A ∈ LX and D(A) ≤ D(B) for A ≤ B.

Proof. (1)⇒ (2). IfB ≤ A, by Lemma 2.3(8), dLX (A,B) = 0 and dLX (D(A),D(B)) =

0. Thus D(B) ≤ D(A). Since α ≥ dLX (A,α⊕A) ≥ dLX (D(A),D(α⊕A)), we have

α⊕D(A) ≥ D(α⊕A).

(2)⇒ (1). Put α = dLX (A,B). Then dLX (A,B) ≥ dLX (D(A),D(B)), since

dLX (A,B)⊕D(A) ≥ D(dLX (A,B)⊕A) ≥ D(B).

(1) ⇒ (3). If A ≤ B, then D(A) ≤ D(B). Since α ≥ dLX (α⊖A,A) ≥ dLX (D(α⊖
A),D(A)), we have D(α⊖A) ≥ α⊖D(A).

(3)⇒ (1). Put α = dLX (A,B). Then dLX (A,B) ≥ dLX (D(A),D(B)) , since

D(A) ≥ D(dLX (A,B)⊖B) ≥ dLX (A,B)⊖D(B).

�

Theorem 3.12. Let D : LX → LX be a map. The following statements hold.

(1) ⊔LXD→(Φ) ≤ D(⊔LXΦ) for each Φ ∈ LLX
where D→(Φ)(B) =

∨
B=D(A)Φ(A)

iff D(α⊖A) ≥ α⊖D(A) for each α ∈ L,A ∈ LX and D(A) ≤ D(B) for A ≤ B.

(2) D(⊓LXΦ) ≤ ⊓LXD→(Φ) for each Φ ∈ LLX
iff α⊕D(A) ≥ D(α⊕A) for each

α ∈ L,A ∈ LX and D(A) ≤ D(B) for A ≤ B.

Proof. (1) (⇒) For all Φ ∈ LLX
,

dLX (B,⊔LXΦ) =
∨

A∈LX (Φ(A)⊖ dLX (B,A))
=

∨
A∈LX dLX (B,Φ(A)⊖A) = dLX (B,

∨
A∈LX Φ(A)⊖A),

dLX (B,⊔LXD→(Φ)) =
∨

C∈LX (D→(Φ)(C)⊖ dLX (B,C))
=

∨
C∈LX dLX (B,D→(Φ)(C)⊖ C) = dLX (B,

∨
C∈LX D→(Φ)(C)⊖ C)).

By Theorem 3.2(3), ⊔LXΦ =
∨

A∈LX (Φ(A)⊖A) and ⊔LXD→(Φ) =
∨

C∈LX (D→(Φ)(C)⊖
C). Define Φ1 : L

X → L as Φ1(A) = α and Φ1(B) = 1, otherwise. Then

(⊔LXΦ1)(x) =
∨

D∈LX

(Φ1(D)⊖D(x)) = α⊖A(x).
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Since D→(Φ1)(B) =
∨

B=D(A)Φ1(A) and D(⊔LXΦ1) ≥ ⊔LXD→(Φ1) for all Φ1 ∈
LLX

, we have

⊔LXD→(Φ1)(x) =
∨

C=D(A)∈LX (D→(Φ1)(C)⊖ C(x))

= Φ1(A)⊖D(A)(x) = α⊖D(A)(x) ≤ D(⊔LXΦ1)(x) = D(α⊖A)(x).

Hence α⊖D(A) ≤ D(α⊖A).

Let A ≤ B be given. Define Φ2 : L
X → L as Φ2(A) = Φ2(B) = 0 and Φ2(C) = 1,

otherwise. Then

(⊔LXΦ2)(x) =
∨

D∈LX

(Φ2(D)⊖D(x)) = A(x) ∨B(x) = B(x).

Since D→(Φ2)(B) =
∨

B=D(A)Φ2(A) and D(⊔LXΦ2) ≥ ⊔LXD→(Φ2) for Φ2 ∈ LLX
,

⊔LXD→(Φ2)(x) =
∨

C=D(A)∈LX (D→(Φ2)(C)⊖ C(x))

= (Φ2(A)⊖D(A)(x)) ∨ (Φ2(B)⊖D(B)(x)) = D(A)(x) ∨ D(B)(x)
≤ D(⊔LXΦ1)(x) = D(A ∨B)(x) = D(B)(x).

Hence D(A) ≤ D(B).

(⇐) ⊔LXD→(Φ) ≤ D(⊔LXΦ), since

⊔LXD→(Φ)(y) =
∨

A∈LX Φ(A)⊖D(A)(y)
≤ D(

∨
A∈LX (Φ(A)⊖A))(y) = D(⊔LXΦ)(y).

(2) (⇒) For all Φ ∈ LLX
,

dLX (⊓LXΦ, B) =
∨

A∈LX (Φ(A)⊖ dLX (A,B))
=

∨
A∈LX dLX (Φ(A)⊕A,B) = dLX (

∧
A∈LX (Φ(A)⊕A), B),

dLX (⊓LXD→(Φ), B) =
∨

C∈LX (D→(Φ)(C)⊖ dLX (C,B))
=

∨
C∈LX ((

∨
D(A)=C Φ(A)⊖ dLX (C,B)))

=
∨

A∈LX (Φ(A)⊖ dLX (D(A), B) =
∨

A∈LX dLX (Φ(A)⊕D(A), B)
= dLX (

∧
A∈LX Φ(A)⊕D(A), B).

By Theorem 3.2(3), ⊓LXΦ =
∧

A∈LX (Φ(A)⊕A) and ⊓LXD→(Φ) =
∧

A∈LX (Φ(A)⊕
D(A)) ∈ LX . Define Φ1 : L

X → L as Φ1(A) = α and Φ1(B) = 1, otherwise. Then

(⊓LXΦ1) =
∧

A∈LX

(Φ1(A)⊕A) = α⊕A.

Since D→(Φ1)(B) =
∨

B=D(A)Φ1(A) and D(⊓LXΦ1) ≤ ⊓LXD→(Φ1) for Φ1 ∈ LLX
,

⊓LXD→(Φ1)(y) =
∧

B∈LX (Φ1(A)⊕D(A)(y))
= α⊕D(A)(y) ≥ D(⊓LXΦ1)(y) = D(α⊕A)(y).

Hence D(α⊕A) ≤ α⊕D(A) ∈ LX .
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Let A ≤ B be given. Define Φ2 : L
X → L as Φ2(A) = Φ2(B) = 0 and Φ2(C) = 1,

otherwise. Then (⊓LXΦ2)(x) =
∧

D∈LX (Φ2(D) ⊕ D(x)) = A(x) ∧ B(x) = A(x).

Since D→(Φ2)(B) =
∨

B=D(A)Φ2(A) and D(⊓LXΦ2) ≤ ⊓LXD→(Φ2) for Φ2 ∈ LLX
,

⊓LXD→(Φ2)(x) =
∨

C=D(A)∈LX (D→(Φ2)(C)⊕ C(x))

= (Φ2(A)⊕D(A)(x)) ∧ (Φ2(B)⊕D(B)(x)) = D(A)(x) ∧ D(B)(x)
≥ D(⊓LXΦ1)(x) = D(A ∧B)(x) = D(A)(x).

Hence D(A) ≤ D(B).

(⇐) D(⊓LXΦ) ≤ ⊓LXD→(Φ), since

⊓LXD→(Φ) =
∧

A∈LX (Φ(A)⊕D(A))
≥

∧
A∈LX D(Φ(A)⊕A) ≥ D(

∧
A∈LX (Φ(A)⊕A)) = D(⊓LXΦ).

�

Theorem 3.13. Let D : LX → LX be a map with dLX (A,B) ≥ dLX (D(A),D(B))

for all A,B ∈ LX . Then followings hold.

(1) τD = {A ∈ LX | A ≤ D(A)} is an Alexandrov fuzzy pretopology, that is, τD

is a fuzzy join complete lattice.

(2) ηD = {A ∈ LX | D(A) ≤ A} is an Alexandrov fuzzy precotopology, that is, ηD

is a fuzzy meet complete lattice.

Proof. (1) (O1) For each A ∈ τD, by Theorem 3.11, D(α⊖A) ≥ α⊖D(A) ≥ α⊖A.

Hence (α⊖A) ∈ τD.

(O2) For each Ai ∈ τD for i ∈ Γ, D(
∨

i∈ΓAi) ≥
∨

i∈ΓD(Ai) ≥
∨

i∈ΓAi. Hence∨
i∈ΓAi ∈ τD.

(2) (O1) For each A ∈ ηD, by Theorem 3.11, D(α ⊕ A) ≤ α ⊕ D(A) ≤ α ⊕ A.

Hence (α⊕A) ∈ ηD.

(O2) For each Ai ∈ ηD for i ∈ Γ, D(
∧

i∈ΓAi) ≤
∧

i∈ΓD(Ai) ≤
∧

i∈ΓAi. Hence∧
i∈ΓAi ∈ ηD. �

Example 3.14. Let X be a set and R ∈ LX×X . For each A ∈ LX , define D1, D2 :

LX → LX as follows:

D1(A)(y) =
∧
x∈X

(R(x, y)⊕A(x)), D2(A)(y) =
∨
x∈X

(R(x, y)⊖A(x)).

For each A,B ∈ LX , the followings hold.

dLX (D1(A), D1(B))
=

∨
y∈X((

∧
x∈X(R(x, y)⊕A(x)))⊖ (

∧
x∈X(R(x, y)⊕B(x))))
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≤
∨

y∈X
∨

x∈X((R(x, y)⊕A(x))⊖ (
∧

x∈X(R(x, y)⊕B(x))))

≤
∨

y∈X
∨

x∈X((R(x, y)⊕A(x))⊖ (R(x, y)⊕B(x))))

≤
∨

x∈X(A(x)⊖B(x)) = dLX (A,B),
dLX (D2(A), D2(B))
=

∨
y∈X((

∨
x∈X(R(x, y)⊖A(x)))⊖ (

∨
x∈X(R(x, y)⊖B(x))))

≤
∨

y∈X((R(x, y)⊖A(x))⊖ (
∨

x∈X(R(x, y)⊖B(x))))

≤
∨

y∈X
∨

x∈X((R(x, y)⊖A(x))⊖ (R(x, y)⊖B(x))))

≤
∨

x∈X(A(x)⊖B(x)) = dLX (A,B).

For each i ∈ {1, 2}, by Theorems 3.12, 3.13 and 3.14, the followings hold.

(1) α ⊕ Di(A) ≥ Di(α ⊕ A) for each α ∈ L,A ∈ LX and Di(A) ≤ Di(B) for

A ≤ B.

(2) Di(α ⊖ A) ≥ α ⊖ Di(A) for each α ∈ L,A ∈ LX and Di(A) ≤ Di(B) for

A ≤ B.

(3) ⊔LXD→
i (Φ) ≤ Di(⊔LXΦ) for each Φ ∈ LLX

whereD→
i (Φ)(B) =

∨
B=Di(A)Φ(A).

(4) Di(⊓LXΦ) ≤ ⊓LXD→
i (Φ) for each Φ ∈ LLX

.

(5) τDi = {A ∈ LX | A ≤ Di(A)} is an Alexandrov fuzzy pretopology, that is,

τDi is a fuzzy join complete lattice.

(6) ηDi = {A ∈ LX | Di(A) ≤ A} is an Alexandrov fuzzy precotopology, that is,

ηDi is a fuzzy meet complete lattice.

Example 3.15. Let X = {x, y, z}, A ∈ [0,∞]X with A(x) = 8, A(y) = 3, A(z) = 9.

(1) Define an Alexandrov pretopology as

τX = {α⊖A | α ∈ [0,∞]}.

By Theorem 3.7(1), (τX , dτX ) is a distance space. For each Φ : τX → [0,∞], since∨
C∈τX (Φ(C)⊖C) =

∨
α∈[0,∞](Φ(α⊖A)⊖(α⊖A)) =

∨
α∈[0,∞]((Φ(α⊖A)⊕α)⊖A)) ∈

τX , it follows that

dτ (B,⊔τXΦ) =
∨

C∈τX (Φ(C)⊖ dτX (B,C))
=

∨
C∈τX dτX (B,Φ(C)⊖ C) = dτX (B,

∨
C∈τX (Φ(C)⊖ C))

= dτX (B,
∨

α∈[0,∞]((Φ(α⊖A)⊕ α)⊖A))).

By Theorem 3.2(2), (τX , dτX ) is a fuzzy join complete lattice.

(2) Define an Alexandrov precotopology as

ηX = {α⊕A | α ∈ [0,∞]}.

By Theorem 3.7(1), (ηX , dηX ) is a distance space. For each Ψ : ηX → [0,∞], since∧
C∈τX (Ψ(C)⊕ C) ∈ ηX =

∧
α∈[0,∞]((Ψ(α⊕A)⊕ α)⊕A)) ∈ ηX , we have
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dηX (⊓ηXΨ, B) =
∨

C∈ηX (Ψ(C)⊖ dηX (C,B))

= dηX (
∧

C∈ηX (Ψ(C)⊕ C), B)

= dηX (
∧

α∈[0,∞]((Ψ(α⊕A)⊕ α)⊕A)), B).

By Theorem 3.2(3), (ηX , dηX ) is a fuzzy meet complete lattice.
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1. R. Bělohlávek: Fuzzy Relational Systems. Kluwer Academic Publishers, New York,

2002.

2. P. Chen & D. Zhang: Alexandroff co-topological spaces. Fuzzy Sets and Systems 161

(2010), no. 18, 2505-2514.
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