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A NOTE ON THE INTEGRAL REPRESENTATIONS OF

GENERALIZED RELATIVE ORDER (α, β) AND GENERALIZED

RELATIVE TYPE (α, β) OF ENTIRE AND MEROMORPHIC

FUNCTIONS WITH RESPECT TO AN ENTIRE FUNCTION

Tanmay Biswas a and Chinmay Biswas b, ∗

Abstract. In this paper we wish to establish the integral representations of gener-
alized relative order (α, β) and generalized relative type (α, β) of entire and mero-
morphic functions where α and β are continuous non-negative functions defined
on (−∞,+∞). We also investigate their equivalence relation under some certain
condition.

1. Introduction

For any entire function f =
∞∑
n=0

anz
n on |z| = r, Mf (r), a function of r is defined

as follows:

Mf (r) = max
|z|=r

|f(z)|.

If an entire function f is non-constant then Mf (r) is strictly increasing and

continuous and its inverse Mf
−1 : (|f(0)|,∞) → (0,∞) exists and is such that

lim
s→+∞

M−1
f (s) = ∞.

Whenever f is meromorphic, one can define another function Tf (r) (see [13,

p.4]) known as Nevanlinna’s characteristic function of f plays the same role as

Mf (r). Moreover, if f is non-constant entire then Tf (r) is also strictly increasing

and continuous function of r. Therefore its inverse T−1
f : (Tf (0),∞) → (0,∞) exists

and is such that lim
s→+∞

T−1
f (s) = ∞.
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The order and lower order of entire or meromorphic functions which are generally

used in computational purpose are classical in complex analysis. Mainly the growth

investigation of entire and meromorphic functions has usually been done through

their maximum moduli or Nevanlinna’s characteristic function in comparison with

those of exponential function. But if one is paying attention to evaluate the growth

rates of any entire and meromorphic function with respect to a new entire function,

the notions of relative growth indicators (see e.g. [1, 2, 15]) will come. On the

other hand, Sheremeta [17] introduced the concept of generalized order of entire

functions considering two continuous non-negative functions defined on (−∞,+∞).

During the past decades, several authors made close investigations on the properties

of entire functions related to generalized order as introduced by Sheremeta [17]

in some different direction. For the purpose of further applications, Biswas et al.

(see e.g. [4] to [11]) rewrite the definition of the generalized order of entire and

meromorphic function after giving a minor modification to the original definition

introduced by Sheremeta (e.g. see, [17]). Further, in order to make some progress

in the study of relative order, Biswas et al. (see e.g. [3, 8]) used the definitions

of generalized relative order (α, β) and generalized relative lower order (α, β) of

an entire and meromorphic function where α and β are continuous non-negative

functions defined on (−∞,+∞).

In order to refine the above growth scale, one may use the definitions of other

growth indicators, such as generalized relative type (α, β) and generalized relative

weak type (α, β) of entire and meromorphic function with respect to an entire func-

tion. For details one may see [3, 8].

Here in this paper, we wish to establish the integral representations of the def-

initions of generalized relative order (α, β), generalized relative lower order (α, β),

generalized relative type (α, β) and generalized relative weak type (α, β) of entire

and meromorphic function with respect to an entire function which considerably ex-

tend earlier results of [12, p.4]. We also investigate their equivalence relations under

certain conditions. We do not explain the standard definitions and notations in the

theory of entire and meromorphic functions (see, e.g., [13], [14], [16], [18] to [20]).

2. Preliminary Remarks and Definitions

Let L be a class of continuous non-negative on (−∞,+∞) functions α such that

α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞ and α((1 + o(1))x) =
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(1 + o(1))α(x) as x → +∞. We say that α ∈ L0, if α ∈ L and α(cx) = (1 +

o(1))α(x) as x0 ≤ x → +∞ for each c ∈ (0,+∞), i.e., α is slowly increasing

function. Clearly L0 ⊂ L. Further we assume that throughout the present paper

α, β ∈ L unless otherwise specifically stated. Further suppose that µ(x) and γ(x)

are any two positive continuous increasing to +∞ on [x0,+∞) functions such that

µ−1(x) exist.

Taking this into account, let us give the following definitions:

Definition 2.1. Let µ(x) and γ(x) be any two positive continuous increasing to +∞
on [x0,+∞) functions. The generalized relative order (α, β) of γ(x) with respect to

µ(x) is defined by

ρ(α,β)[γ]µ = lim sup
r→+∞

α(µ−1(γ(r)))

β(r)
.

Definition 2.2. Let µ(x) and γ(x) be any two positive continuous increasing to +∞
on [x0,+∞) functions. The growth indicator ρ(α,β)[γ]µ is alternatively defined as:

The integral
∞∫
r0

exp(α(µ−1(γ(r))))
(expβ(r))k+1 dr (r0 > 0) converges for k > ρ(α,β)[γ]µ and diverges

for k < ρ(α,β)[γ]µ.

Definition 2.3. Let µ(x) and γ(x) be any two positive continuous increasing to

+∞ on [x0,+∞) functions. The generalized relative lower order (α, β) of γ(x) with

respect to µ(x) is defined as:

λ(α,β)[γ]µ = lim inf
r→+∞

α(µ−1(γ(r)))

β(r)
.

Definition 2.4. Let µ(x) and γ(x) be any two positive continuous increasing to +∞
on [x0,+∞) functions. The growth indicator λ(α,β)[γ]µ is alternatively defined as:

The integral
∞∫
r0

exp(α(µ−1(γ(r))))
(expβ(r))k+1 dr (r0 > 0) converges for k > λ(α,β)[γ]µ and diverges

for k < λ(α,β)[γ]µ.

If we consider µ(x) = Mg(x), γ(x) = Mf (x) and α, β ∈ L0 where f and g

are any two entire functions, then the above definitions reduce to the definitions

of generalized relative order (α, β) and generalized relative lower order (α, β) of an

entire function f with respect to another entire function g respectively as introduced

by Biswas et al. [3]. Similarly if we take µ(x) = Tg(x), γ(x) = Tf (x) and α,

β ∈ L0 where f is a meromorphic function and g be any entire function, then the

above definitions reduce to the definitions of generalized relative order (α, β) and
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generalized relative lower order (α, β) of a meromorphic function f with respect to

an entire function g respectively. For details, one may see [8] and [3].

In order to refine the above growth scale, one may introduce the definition of an

another growth indicator, called generalized relative type (α, β), as follows:

Definition 2.5. Let µ(x) and γ(x) be any two positive continuous increasing to +∞
on [x0,+∞) functions. The generalized relative type (α, β) denoted by σ(α,β)[γ]µ

of γ(x) with respect to µ(x) having finite positive generalized relative order (α, β),

ρ(α,β)[γ]µ (0 < ρ(α,β)[γ]µ < +∞) is defined by

σ(α,β)[γ]µ = lim sup
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
.

The above definition can alternatively be given in the following manner:

Definition 2.6. Let µ(x) and γ(x) be any two positive continuous increasing to

+∞ on [x0,+∞) functions having finite positive generalized relative order (α, β),

ρ(α,β)[γ]µ (0 < ρ(α,β)[γ]µ < +∞). Then the generalized relative type (α, β), σ(α,β)[γ]µ

of γ(x) with respect to µ(x) is defined as: The integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
ρ(α,β)[γ]µ )]k+1

dr

(r0 > 0) converges for k > σ(α,β)[γ]µ and diverges for k < σ(α,β)[γ]µ.

Analogously, to determine the relative growth of two increasing functions having

same non-zero finite generalized relative lower order (α, β), one can introduce the

definition of generalized relative weak type (α, β) in the following way.

Definition 2.7. Let µ(x) and γ(x) be any two positive continuous increasing to

+∞ on [x0,+∞) functions having finite positive generalized relative lower order

(α, β), λ(α,β)[γ]µ (0 < λ(α,β)[γ]µ < +∞). Then the generalized relative weak type

(α, β) denoted by τ (α,β)[γ]µ of γ(x) with respect to µ(x) is defined as

τ (α,β)[γ]µ = lim inf
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
.

The above definition can also alternatively be given

Definition 2.8. Let µ(x) and γ(x) be any two positive continuous increasing to

+∞ on [x0,+∞) functions having finite positive generalized relative lower order

(α, β), λ(α,β)[γ]µ (0 < λ(α,β)[γ]µ < +∞). Then the generalized relative weak type
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(α, β), τ (α,β)[γ]µ of γ(x) with respect to µ(x) is defined as

∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))λ(α,β)[γ]µ)]k+1
dr (r0 > 0)

converges for k > τ (α,β)[γ]µ and diverges for k < τ (α,β)[γ]µ.

Now a question may arise about the equivalence of the definitions of generalized

relative order (α, β), generalized relative lower order (α, β), generalized relative type

(α, β) and generalized relative weak type (α, β) with their integral representations.

In this paper we would like to establish such equivalence of Definition 2.1, Definition

2.3, Definition 2.5 and Definition 2.7 with Definition 2.2, Definition 2.4, Definition

2.6 and Definition 2.8 respectively and also investigate some growth properties re-

lated to generalized relative type (α, β) and generalized relative weak type (α, β) of

γ(x) with respect to µ(x).

3. Main Results

In this section we state the main results of this paper. First of all we prove the

following lemma which will be needed in the sequel.

Lemma 3.1. Let the integral
∞∫
R0

exp(α(µ−1(γ(r))))
(expβ(r))k+1 dr (r0 > 0) converges for 0 < k <

+∞. Then

lim
r→+∞

exp(α(µ−1(γ(r))))

(expβ(r))k
= 0.

Proof. Since the integral
∞∫
r0

exp(α(µ−1(γ(r))))
(expβ(r))k+1 dr is convergent for 0 < k < +∞, given ε

(> 0) there exists a number ℜ = ℜ(ε) such that

∞∫
r0

exp(α(µ−1(γ(r))))

(expβ(r))k+1
dr < ε for r0 > ℜ.

i.e., for r0 > ℜ,
r0+r∫
r0

exp(α(µ−1(γ(r))))

(expβ(r))k+1
dr < ε.

Since exp(α(µ−1(γ(r)))) is an increasing function of r, so
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r0+expβ(r0)∫
r0

exp(α(µ−1(γ(r))))

(expβ(r))k+1
dr ≥ exp(α(µ−1(γ(r0))))

(expβ(r0))k+1
· (expβ(r0))

i.e.,

r0+expβ(r0)∫
r0

exp(α(µ−1(γ(r))))

(expβ(r))k+1
dr ≥ exp(α(µ−1(γ(r0))))

(expβ(r0))k
for r0 > ℜ,

i.e.,
exp(α(µ−1(γ(r0))))

(expβ(r0))k
< ε for r0 > ℜ,

from which it follows that

lim
r→+∞

exp(α(µ−1(γ(r))))

(expβ(r))k
= 0.

This proves the lemma. �

Theorem 3.2. Let µ(x) and γ(x) be any two positive continuous increasing to +∞
on [x0,+∞) functions. Then Definition 2.1 and Definition 2.2 are equivalent.

Proof. Case 1. ρ(α,β)[γ]µ = +∞.

Definition 2.1 ⇒ Definition 2.2.

As ρ(α,β)[γ]µ = ∞, from Definition 2.1 we have for arbitrary positive G and for a

sequence of values of r tending to infinity that

α(µ−1(γ(r))) > Gβ(r)

(3.1) i.e, exp(α(µ−1(γ(r)))) > (expβ(r))G.

If possible let the integral
∞∫
r0

exp(α(µ−1(γ(r))))
(expβ(r))G+1 dr (r0 > 0) be converge. Then by Lemma

3.1,

lim sup
r→+∞

exp(α(µ−1(γ(r))))

(expβ(r))G
= 0.

So for all sufficiently large values of r,

(3.2) exp(α(µ−1(γ(r)))) < (expβ(r))G.

Now from (3.1) and (3.2) we arrive at a contradiction.

Hence
∞∫
r0

exp(α(µ−1(γ(r))))
(expβ(r))G+1 dr (r0 > 0) diverges whenever G is finite, which is Defi-

nition 2.2.

Definition 2.2 ⇒ Definition 2.1.
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Suppose G be any positive number. Since ρ(α,β)[γ]µ = +∞, from Definition

2.2 the divergence of the integral
∞∫
r0

exp(α(µ−1(γ(r))))
(expβ(r))G+1 dr (r0 > 0) gives for arbitrary

positive ε and for a sequence of values of r tending to infinity,

exp(α(µ−1(γ(r)))) > (expβ(r))G−ε

i.e, α(µ−1(γ(r))) > (G− ε)β(r).

This gives that

lim sup
r→+∞

α(µ−1(γ(r)))

β(r)
≥ (G− ε).

Since G > 0 is arbitrary, it follows that

lim sup
r→+∞

α(µ−1(γ(r)))

β(r)
= ∞.

Thus Definition 2.1 follows.

Case 2. 0 ≤ ρ(α,β)[γ]µ < +∞.

Definition 2.1 ⇒ Definition 2.2.

Subcase (I). 0 < ρ(α,β)[γ]µ < +∞.

If 0 < ρ(α,β)[γ]µ < ∞, then for arbitrary ε(> 0) and for all sufficiently large

values of r,
α(µ−1(γ(r)))

β(r)
< ρ(α,β)[γ]µ + ε

i.e, exp(α(µ−1(γ(r)))) < (expβ(r))(ρ(α,β)[γ]µ+ε)

i.e,
exp(α(µ−1(γ(r))))

(expβ(r))k
<

(expβ(r))(ρ(α,β)[γ]µ+ε)

(expβ(r))k

i.e,
exp(α(µ−1(γ(r))))

(expβ(r))k
<

1

(expβ(r))k−(ρ(α,β)[γ]µ+ε)
.

Therefore
∞∫
r0

exp(α(µ−1(γ(r))))
(expβ(r))k+1 dr (r0 > 0) converges if k > ρ(α,β)[γ]µ and diverges if

k < ρ(α,β)[γ]µ.

Subcase (II).

When ρ(α,β)[γ]µ = 0, Definition 2.1 gives for all sufficiently large values of r that

α(µ−1(γ(r)))

β(r)
≤ ε.

Then as before we obtain that
∞∫
R0

exp(α(µ−1(γ(r))))
(expβ(r))k+1 dr (r0 > 0) converges for k > 0 and

diverges for k < 0.
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Thus from Subcase (I) and Subcase (II) Definition 2.2 follows.

Definition 2.2 ⇒ Definition 2.1.

By Definition 2.2, for arbitrary ε (> 0) the integral
∞∫
r0

exp(α(µ−1(γ(r))))

(expβ(r))
ρ(α,β)[γ]µ+ε+1dr con-

verges. Then by Lemma 3.1 we have

lim sup
r→+∞

exp(α(µ−1(γ(r))))

(expβ(R))ρ(α,β)[γ]µ+ε
= 0

i.e, for all sufficiently large values of r,

exp(α(µ−1(γ(r))))

(expβ(r))ρ(α,β)[γ]µ+ε
< ε0

i.e, exp(α(µ−1(γ(r)))) < ε0 · (expβ(r))ρ(α,β)[γ]µ+ε

i.e, α(µ−1(γ(r))) < log ε0 + (ρ(α,β)[γ]µ + ε)β(r)

i.e,
α(µ−1(γ(r)))

β(r)
≤ log ε0

β(r)
+ (ρ(α,β)[γ]µ + ε)

i.e, lim sup
r→+∞

α(µ−1(γ(r)))

β(r)
≤ ρ(α,β)[γ]µ + ε.

Since ε (> 0) is arbitrary, it follows from above that

(3.3) lim sup
r→+∞

α(µ−1(γ(r)))

β(r)
≤ ρ(α,β)[γ]µ.

Again by Definition 2.2 the divergence of the integral
∞∫
r0

exp(α(µ−1(γ(r))))

(expβ(r))
ρ(α,β)[γ]µ−ε+1dr im-

plies that there exists a sequence of values of r tending to infinity such that

exp(α(µ−1(γ(r))))

(expβ(r))ρ(α,β)[γ]µ−ε+1
>

1

(expβ(r))1+ε

i.e, exp(α(µ−1(γ(r)))) > (expβ(r))ρ(α,β)[γ]µ−2ε

i.e, α(µ−1(γ(r))) > (ρ(α,β)[γ]µ − 2ε)β(r)

i.e,
α(µ−1(γ(r)))

β(r)
> (ρ(α,β)[γ]µ − 2ε).

As ε (> 0) is arbitrary, we get that

(3.4) lim sup
r→+∞

α(µ−1(γ(r)))

β(r)
≥ ρ(α,β)[γ]µ.

Thus from (3.3) and (3.4) it follows that

lim sup
r→+∞

α(µ−1(γ(r)))

β(r)
= ρ(α,β)[γ]µ.
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Thus we obtain Definition 2.1.

Now combining Case 1 and Case 2, the theorem follows. �

In the line of Theorem 3.2 we may now state the following theorem without proof.

Theorem 3.3. Let µ(x) and γ(x) be any two positive continuous increasing to +∞
on [x0,+∞) functions. Then Definition 2.3 and Definition 2.4 are equivalent.

Next we prove the equivalence of the definitions of generalized relative type (α, β)

and generalized relative weak type (α, β) with their integral representations. For this

purpose we need the following lemma.

Lemma 3.4. Let the integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))
[exp((exp(β(r)))A)]k+1 dr (r0 > 0) converge where 0 <

A < +∞. Then

lim
r→+∞

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))A)]k
= 0.

Proof. Since the integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))
[exp((exp(β(r)))A)]k+1 dr (r0 > 0) converges, then there exist

R(ε) > 0 such that

∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))A)]k+1
dr < ε, if r0 > R(ε).

Therefore,
exp((exp(β(r0)))A)+r0∫

r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))A)]k+1
dr < ε.

Since here exp(exp(α(µ−1(γ(r))))) increases with r, so

exp((exp(β(r0)))A)+r0∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))A)]k+1
dr ≥ .

exp(exp(α(µ−1(γ(r0)))))

[exp((exp(β(r0)))A)]k+1
· [exp((exp(β(r0)))A)].

Therefore for all sufficiently large values of r,

exp((exp(β(r0)))A)+r0∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))A)]k+1
dr ≥ exp(exp(α(µ−1(γ(r0)))))

[exp((exp(β(r0)))A)]k
,
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so that
exp(exp(α(µ−1(γ(r0)))))

[exp((exp(β(r0)))A)]k
< ε if r0 > R(ε).

i.e., lim
r→+∞

exp(exp(α(µ−1(γ(r0)))))

[exp((exp(β(r0)))A)]k
= 0.

This proves the lemma. �

Theorem 3.5. Let µ(x) and γ(x) be any two positive continuous increasing to

+∞ on [x0,+∞) functions having finite positive generalized relative order (α, β),

ρ(α,β)[γ]µ (0 < ρ(α,β)[γ]µ < +∞) and generalized relative type (α, β), σ(α,β)[γ]µ.

Then Definition 2.5 and Definition 2.6 are equivalent.

Proof. Let us consider µ(x) and γ(x) be any two positive continuous increasing to

+∞ on [x0,+∞) functions such that ρ(α,β)[γ]µ (0 < ρ(α,β)[γ]µ < +∞) exists.

Case I. σ(α,β)[γ]µ = +∞.

Definition 2.5 ⇒ Definition 2.6.

As σ(α,β)[γ]µ = +∞, from Definition 2.5 we have for arbitrary positive G and for

a sequence of values of r tending to infinity that

exp(α(µ−1(γ(r)))) > G · (exp(β(r)))ρ(α,β)[γ]µ

i.e., exp(exp(α(µ−1(γ(r))))) > [exp((exp(β(r)))ρ(α,β)[γ]µ)]G.(3.5)

If possible let the integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
ρ(α,β)[γ]µ )]G+1

dr (r0 > 0) be convergent.

Then by Lemma 3.4,

lim sup
r→+∞

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))ρ(α,β)[γ]µ)]G
= 0.

So for all sufficiently large values of r,

(3.6) exp(exp(α(µ−1(γ(r))))) < [exp((exp(β(r)))ρ(α,β)[γ]µ)]G.

Therefore from (3.5) and (3.6) we arrive at a contradiction.

Hence
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
ρ(α,β)[γ]µ )]G+1

dr (r0 > 0) diverges whenever G is finite, which

is the Definition 2.6.

Definition 2.6 ⇒ Definition 2.5.

Let G be any positive number. Since σ(α,β)[γ]µ = +∞, from Definition 2.6, the

divergence of the integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
ρ(α,β)[γ]µ )]G+1

dr (r0 > 0) gives for arbitrary
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positive ε and for a sequence of values of r tending to infinity

exp(exp(α(µ−1(γ(r))))) > [exp((exp(β(r)))ρ(α,β)[γ]µ)]G−ε

i.e., exp(α(µ−1(γ(r)))) > (G− ε)(exp(β(r)))ρ(α,β)[γ]µ ,

which implies that

lim sup
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
≥ G− ε.

Since G > 0 is arbitrary, it follows that

lim sup
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
= ∞.

Thus Definition 2.5 follows.

Case II. 0 ≤ σ(α,β)[γ]µ < +∞.

Definition 2.5 ⇒ Definition 2.6.

Subcase (A). 0 < σ(α,β)[γ]µ < +∞.

Let µ(x) and γ(x) be any two positive continuous increasing to +∞ on [x0,+∞)

functions such that 0 < σ(α,β)[γ]µ < +∞ exists. Then according to the Definition

2.5, for arbitrary positive ε and for all sufficiently large values of r, we obtain

exp(α(µ−1(γ(r)))) < (σ(α,β)[γ]µ + ε)(exp(β(r)))ρ(α,β)[γ]µ

i.e., exp(exp(α(µ−1(γ(r))))) < [exp((exp(β(r)))ρ(α,β)[γ]µ)]σ(α,β)[γ]µ+ε

i.e.,
exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))ρ(α,β)[γ]µ)]k
<

[exp((exp(β(r)))ρ(α,β)[γ]µ)]σ(α,β)[γ]µ+ε

[exp((exp(β(r)))ρ(α,β)[γ]µ)]k

i.e.,
exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))ρ(α,β)[γ]µ)]k
<

1

[exp((exp(β(r)))ρ(α,β)[γ]µ)]k−(σ(α,β)[γ]µ+ε)

Therefore
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
ρ(α,β)[γ]µ )]k+1

dr (r0 > 0) converges for k > σ(α,β)[γ]µ.

Again by Definition 2.5, we obtain for a sequence values of r tending to infinity

that

exp(α(µ−1(γ(r)))) > (σ(α,β)[γ]µ − ε)(exp(β(r)))ρ(α,β)[γ]µ

i.e., exp(exp(α(µ−1(γ(r))))) > [exp((exp(β(r)))ρ(α,β)[γ]µ)]σ(α,β)[γ]µ−ε.(3.7)

So for k < σ(α,β)[γ]µ, we get from (3.7) that

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))ρ(α,β)[γ]µ)]k
>

1

[exp((exp(β(r)))ρ(α,β)[γ]µ)]k−(σ(α,β)[γ]µ−ε)
.



366 Tanmay Biswas & Chinmay Biswas

Therefore
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
ρ(α,β)[γ]µ )]k+1

dr (r0 > 0) diverges for k < σ(α,β)[γ]µ.

Hence
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
ρ(α,β)[γ]µ )]k+1

dr (r0 > 0) converges for k > σ(α,β)[γ]µ and di-

verges for k < σ(α,β)[γ]µ.

Subcase (B). σ(α,β)[γ]µ = 0.

When σ(α,β)[γ]µ = 0, Definition 2.5 gives for all sufficiently large values of r that

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
< ε.

Then as before we obtain that
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
ρ(α,β)[γ]µ )]k+1

dr (r0 > 0) converges for

k > 0 and diverges for k < 0.

Thus combining Subcase (A) and Subcase (B), Definition 2.6 follows.

Definition 2.6 ⇒ Definition 2.5.

From Definition 2.6 and for arbitrary positive ε the integral

∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))ρ(α,β)[γ]µ)]σ(α,β)[γ]µ+ε+1
dr (r0 > 0)

converges. Then by Lemma 3.4, we get

lim sup
r→+∞

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))ρ(α,β)[γ]µ)]σ(α,β)[γ]µ+ε
= 0.

So we obtain all sufficiently large values of r that

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))ρ(α,β)[γ]µ)]σ(α,β)[γ]µ+ε
< ε

i.e., exp(exp(α(µ−1(γ(r))))) < ε · [exp((exp(β(r)))ρ(α,β)[γ]µ)]σ(α,β)[γ]µ+ε

i.e., exp(α(µ−1(γ(r)))) < log ε+ (σ(α,β)[γ]µ + ε)(exp(β(r)))ρ(α,β)[γ]µ

i.e., lim sup
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
≤ σ(α,β)[γ]µ + ε.

Since ε > 0 is arbitrary, it follows from above that

(3.8) lim sup
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
≤ σ(α,β)[γ]µ.

On the other hand the divergence of the integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
ρ(α,β)[γ]µ )]

σ(α,β)[γ]µ−ε+1dr

(r0 > 0) implies that there exists a sequence of values of r tending to infinity such
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that

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))ρ(α,β)[γ]µ)]σ(α,β)[γ]µ−ε+1
>

1

[exp((exp(β(r)))ρ(α,β)[γ]µ)]1+ε

i.e., exp(exp(α(µ−1(γ(r))))) > [exp((exp(β(r)))ρ(α,β)[γ]µ)]σ(α,β)[γ]µ−2ε

i.e., exp(α(µ−1(γ(r)))) > (σ(α,β)[γ]µ − 2ε)((exp(β(r)))ρ(α,β)[γ]µ)

i.e.,
exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
> (σ(α,β)[γ]µ − 2ε).

As ε > 0 is arbitrary, it follows from above that

(3.9) lim sup
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
≥ σ(α,β)[γ]µ.

So from (3.8) and (3.9) , we obtain that

lim sup
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
= σ(α,β)[γ]µ.

This proves the theorem. �

Theorem 3.6. Let µ(x) and γ(x) be any two positive continuous increasing to +∞
on [x0,+∞) functions having finite positive generalized relative lower order (α, β),

λ(α,β)[γ]µ (0 < λ(α,β)[γ]µ < +∞) and generalized relative weak type (α, β), τ (α,β)[γ]µ.

Then Definition 2.7 and Definition 2.8 are equivalent.

Proof. Let us consider µ(x) and γ(x) be any two positive continuous increasing to

+∞ on [x0,+∞) functions such that λ(α,β)[γ]µ (0 < λ(α,β)[γ]µ < +∞) exists.

Case I. τ (α,β)[γ]µ = +∞.

Definition 2.7 ⇒ Definition 2.8.

As τ (α,β)[γ]µ = +∞, from Definition 2.7 we obtain for arbitrary positive G and

for all sufficiently large values of r that

exp(α(µ−1(γ(r)))) > G · (exp(β(r)))λ(α,β)[γ]µ

i.e., exp(exp(α(µ−1(γ(r))))) > [exp((exp(β(r)))λ(α,β)[γ]µ)]G.(3.10)

Now if possible let the integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
λ(α,β)[γ]µ )]G+1

dr (r0 > 0) be converge.

Then by Lemma 3.4,

lim inf
r→+∞

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))λ(α,β)[γ]µ)]G
= 0.



368 Tanmay Biswas & Chinmay Biswas

So for a sequence of values of r tending to infinity we get

(3.11) exp(exp(α(µ−1(γ(r))))) < [exp((exp(β(r)))λ(α,β)[γ]µ)]G.

Therefore from (3.10) and (3.11), we arrive at a contradiction.

Hence
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
λ(α,β)[γ]µ )]G+1

dr (r0 > 0) diverges whenever G is finite, which

is the Definition 2.8.

Definition 2.8 ⇒ Definition 2.7.

Let G be any positive number. Since τ (α,β)[γ]µ = +∞, from Definition 2.8, the

divergence of the integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
λ(α,β)[γ]µ )]G+1

dr (r0 > 0) gives for arbitrary

positive ε and for all sufficiently large values of r that

exp(exp(α(µ−1(γ(r))))) > [exp((exp(β(r)))λ(α,β)[γ]µ)]G−ε

i.e., exp(α(µ−1(γ(r)))) > (G− ε)(exp(β(r)))λ(α,β)[γ]µ ,

which implies that

lim inf
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
≥ G− ε.

Since G > 0 is arbitrary, it follows that

lim inf
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
= ∞.

Thus Definition 2.7 follows.

Case II. 0 ≤ τ (α,β)[γ]µ < +∞.

Definition 2.7 ⇒ Definition 2.8.

Subcase (C). 0 < τ (α,β)[γ]µ < +∞.

Let µ(x) and γ(x) be any two positive continuous increasing to +∞ on [x0,+∞)

functions such that 0 < τ (α,β)[γ]µ < +∞ exists. Then according to the Definition

2.7, for a sequence of values of r tending to infinity we get

exp(α(µ−1(γ(r)))) < (τ (α,β)[γ]µ + ε)(exp(β(r)))λ(α,β)[γ]µ

i.e., exp(exp(α(µ−1(γ(r))))) < [exp((exp(β(r)))λ(α,β)[γ]µ)]τ (α,β)[γ]µ+ε

i.e.,
exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))λ(α,β)[γ]µ)]k
<

[exp((log[q−1] r)λ
(p,q)
α (β))]τ (α,β)[γ]µ+ε

[exp((exp(β(r)))λ(α,β)[γ]µ)]k

i.e.,
exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))λ(α,β)[γ]µ)]k
<

1

[exp((exp(β(r)))λ(α,β)[γ]µ)]k−(τ (α,β)[γ]µ+ε)
.

Therefore
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
λ(α,β)[γ]µ )]k+1

dr (r0 > 0) converges for k > τ (α,β)[γ]µ.
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Again by Definition 2.7, we obtain for all sufficiently large values of r that

exp(α(µ−1(γ(r)))) > (τ (α,β)[γ]µ − ε)(exp(β(r)))λ(α,β)[γ]µ

i.e., exp(exp(α(µ−1(γ(r))))) > [exp((exp(β(r)))λ(α,β)[γ]µ)]τ (α,β)[γ]µ−ε.(3.12)

So for k < τ (α,β)[γ]µ, we get from (3.12) that

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))λ(α,β)[γ]µ)]k
>

1

[exp((exp(β(r)))λ(α,β)[γ]µ)]k−(τ (α,β)[γ]µ−ε)
.

Therefore
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
λ(α,β)[γ]µ )]k+1

dr (r0 > 0) diverges for k < τ (α,β)[γ]µ.

Hence
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
λ(α,β)[γ]µ )]k+1

dr (r0 > 0) converges for k > τ (α,β)[γ]µ and di-

verges for k < τ (α,β)[γ]µ.

Subcase (D). τ (α,β)[γ]µ = 0.

When τ (α,β)[γ]µ = 0, Definition 2.7 gives for a sequence of values of r tending to

infinity that

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
< ε.

Then as before we obtain that
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
λ(α,β)[γ]µ )]k+1

dr (r0 > 0) converges for

k > 0 and diverges for k < 0.

Thus combining Subcase (C) and Subcase (D), Definition 2.8 follows.

Definition 2.8 ⇒ Definition 2.7.

From Definition 2.8 and for arbitrary positive ε the integral

∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))λ(α,β)[γ]µ)]τ (α,β)[γ]µ+ε+1
dr (r0 > 0)

converges. Then by Lemma 3.4, we get

lim inf
r→+∞

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))λ(α,β)[γ]µ)]τ (α,β)[γ]µ+ε
= 0.

So we get for a sequence of values of r tending to infinity that

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))λ(α,β)[γ]µ)]τ (α,β)[γ]µ+ε
< ε
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i.e., exp(exp(α(µ−1(γ(r))))) < ε · [exp((exp(β(r)))λ(α,β)[γ]µ)]τ (α,β)[γ]µ+ε

i.e., exp(α(µ−1(γ(r)))) < log ε+ (τ (α,β)[γ]µ + ε)(exp(β(r)))λ(α,β)[γ]µ

i.e., lim inf
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
≤ τ (α,β)[γ]µ + ε.

Since ε > 0 is arbitrary, it follows from above that

(3.13) lim inf
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
≤ τ (α,β)[γ]µ.

On the other hand the divergence of the integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
λ(α,β)[γ]µ )]

τ(α,β)[γ]µ−ε+1dr

(r0 > 0) implies for all sufficiently large values of r that

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))λ(α,β)[γ]µ)]τ (α,β)[γ]µ−ε+1
>

1

[exp((exp(β(r)))λ(α,β)[γ]µ)]1+ε

i.e., exp(exp(α(µ−1(γ(r))))) > [exp((exp(β(r)))λ(α,β)[γ]µ)]τ (α,β)[γ]µ−2ε

i.e., exp(α(µ−1(γ(r)))) > (τ (α,β)[γ]µ − 2ε)((exp(β(r)))λ(α,β)[γ]µ)

i.e.,
exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
> (τ (α,β)[γ]µ − 2ε).

As ε > 0 is arbitrary, it follows from above that

(3.14) lim inf
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
≥ τ (α,β)[γ]µ.

So from (3.13) and (3.14) we obtain

lim inf
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
= τ (α,β)[γ]µ.

This proves the theorem. �

Next we introduce the following two relative growth indicators which will also

help our subsequent study.

Definition 3.7. Let µ(x) and γ(x) be any two positive continuous increasing to

+∞ on [x0,+∞) functions having finite positive generalized relative order (α, β),

(0 < ρ(α,β)[γ]µ < +∞). Then the generalized relative lower type (α, β) of γ(x) with

respect to µ(x) is defined as:

σ(α,β)[γ]µ = lim inf
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
.

The above definition can alternatively be defined in the following manner:
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Definition 3.8. Let µ(x) and γ(x) be any two positive continuous increasing to

+∞ on [x0,+∞) functions having finite positive generalized relative order (α, β),

ρ(α,β)[γ]µ (0 < ρ(α,β)[γ]µ < +∞). Then the generalized relative lower type (α, β)

denoted by σ(α,β)[γ]µ of γ(x) with respect to µ(x) is defined as: The integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
ρ(α,β)[γ]µ )]k+1

dr (r0 > 0) converges for k > σ(α,β)[γ]µ and diverges

for k < σ(α,β)[γ]µ.

Definition 3.9. Let µ(x) and γ(x) be any two positive continuous increasing to +∞
on [x0,+∞) functions having finite positive generalized relative lower order (α, β)

(0 < λ(α,β)[γ]µ < +∞). Then the generalized relative upper weak type (α, β) of

γ(x) with respect to µ(x) is defined as:

τ(α,β)[γ]µ = lim sup
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
.

The above definition can also alternatively defined as:

Definition 3.10. Let µ(x) and γ(x) be any two positive continuous increasing

to +∞ on [x0,+∞) functions having finite positive generalized relative lower or-

der (α, β) (0 < λ(α,β)[γ]µ < +∞). Then generalized relative upper weak type

(α, β) denoted by τ(α,β)[γ]µ of γ(x) with respect to µ(x) is defined as: The integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
λ(α,β)[γ]µ )]k+1

dr (r0 > 0) converges for k > τ(α,β)[γ]µ and diverges for

k < τ(α,β)[γ]µ.

Now we state the following two theorems without their proofs as those can easily

be carried out with help of Lemma 3.4 and in the line of Theorem 3.5 and Theorem

3.6 respectively.

Theorem 3.11. Let µ(x) and γ(x) be any two positive continuous increasing to +∞
on [x0,+∞) functions having finite positive generalized relative order (α, β) (0 <

ρ(α,β)[γ]µ < +∞) and generalized relative lower type (α, β) denoted by σ(α,β)[γ]µ.

Then Definition 3.7 and Definition 3.8 are equivalent.

Theorem 3.12. Let µ(x) and γ(x) be any two positive continuous increasing to +∞
on [x0,+∞) functions having finite positive generalized relative lower order (α, β)

(0 < λ(α,β)[γ]µ < +∞) and generalized relative upper weak type (α, β) denoted by

τ(α,β)[γ]µ. Then Definition 3.9 and Definition 3.10 are equivalent.
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Theorem 3.13. µ(x) and γ(x) be any two positive continuous increasing to +∞
on [x0,+∞) functions with 0 < λ(α,β)[γ]µ ≤ ρ(α,β)[γ]µ < +∞. Then

(i) σ(α,β)[γ]µ = lim sup
r→+∞

exp(α(µ−1(r)))

(exp(β(γ−1(r))))ρ(α,β)[γ]µ
,

(ii) σ(α,β)[γ]µ = lim inf
r→+∞

exp(α(µ−1(r)))

(exp(β(γ−1(r))))ρ(α,β)[γ]µ
,

(iii) τ (α,β)[γ]µ = lim inf
r→+∞

exp(α(µ−1(r)))

(exp(β(γ−1(r))))λ(α,β)[γ]µ

and

(iv) τ(α,β)[γ]µ = lim sup
r→+∞

exp(α(µ−1(r)))

(exp(β(γ−1(r))))λ(α,β)[γ]µ
.

Proof. Taking γ(r) = R, theorem follows from the definitions of σ(α,β)[γ]µ, σ(α,β)[γ]µ,

τ (α,β)[γ]µ and τ(α,β)[γ]µ respectively. �

In the following theorem we obtain a relationship between σ(α,β)[γ]µ, σ(α,β)[γ]µ,

τ(α,β)[γ]µ and τ (α,β)[γ]µ.

Theorem 3.14. Let µ(x) and γ(x) be any two positive continuous increasing to +∞
on [x0,+∞) functions such ρ(α,β)[γ]µ = λ(α,β)[γ]µ (0 < λ(α,β)[γ]µ = ρ(α,β)[γ]µ <

+∞), then the following quantities

(i) σ(α,β)[γ]µ, (ii) τ (α,β)[γ]µ, (iii) σ(α,β)[γ]µ and (iv) τ(α,β)[γ]µ

are all equivalent.

Proof. From Definition 2.8, it follows that the integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
λ(α,β)[γ]µ )]k+1

dr

(r0 > 0) converges for k > τ (α,β)[γ]µ and diverges for k < τ (α,β)[γ]µ. On the other

hand, Definition 2.6 implies that the integral
∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))
ρ(α,β)[γ]µ )]k+1

dr (r0 > 0)

converges for k > σ(α,β)[γ]µ and diverges for k < σ(α,β)[γ]µ.

(i) ⇒ (ii).

Now it is obvious that all the quantities in the expression[
exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))λ(α,β)[γ]µ)]k+1
− exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))ρ(α,β)[γ]µ)]k+1

]
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are of non negative type. So

∞∫
r0

[
exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))λ(α,β)[γ]µ)]k+1

− exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))ρ(α,β)[γ]µ)]k+1

]
dr ≥ 0 for r0 > 0

i.e.,

∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))λ(α,β)[γ]µ)]k+1
dr ≥

∞∫
r0

exp(exp(α(µ−1(γ(r)))))

[exp((exp(β(r)))ρ(α,β)[γ]µ)]k+1
dr for r0 > 0.

(3.15) i.e., τ (α,β)[γ]µ ≥ σ(α,β)[γ]µ.

Further as ρ(α,β)[γ]µ = λ(α,β)[γ]µ, therefore we get that

σ(α,β)[γ]µ = lim sup
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
≥ lim inf

r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ

= lim inf
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
= τ (α,β)[γ]µ.(3.16)

Hence from (3.15) and (3.16) we obtain

(3.17) σ(α,β)[γ]µ = τ (α,β)[γ]µ.

(ii) ⇒ (iii).

Since ρ(α,β)[γ]µ = λ(α,β)[γ]µ, we get

τ (α,β)[γ]µ = lim inf
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
= lim inf

r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
= σ(α,β)[γ]µ.

(iii) ⇒ (iv).

In view of (3.17) and the condition ρ(α,β)[γ]µ = λ(α,β)[γ]µ, it follows that

σ(α,β)[γ]µ = lim inf
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ

i.e., σ(α,β)[γ]µ = lim inf
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ

i.e., σ(α,β)[γ]µ = τ (α,β)[γ]µ

i.e., σ(α,β)[γ]µ = σ(α,β)[γ]µ
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i.e., σ(α,β)[γ]µ = lim sup
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ

i.e., σ(α,β)[γ]µ = lim sup
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ

i.e., σ(α,β)[γ]µ = τ(α,β)[γ]µ.

(iv) ⇒ (i).

As ρ(α,β)[γ]µ = λ(α,β)[γ]µ, we obtain that

τ(α,β)[γ]µ = lim sup
r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))λ(α,β)[γ]µ
= lim sup

r→+∞

exp(α(µ−1(γ(r))))

(exp(β(r)))ρ(α,β)[γ]µ
= σ(α,β)[γ]µ.

Thus the theorem follows. �

Remark 3.15. If we consider µ(x) = Mg(x) and γ(x) = Mf (x) where f and g are

any two entire functions, then the above results reduces for the generalized relative

growth indicators such as generalized relative order (α, β), generalized relative type

(α, β) etc. of an entire function f with respect to another entire function g.

Remark 3.16. If we take µ(x) = Tg(x) and γ(x) = Tf (x) where f be a mero-

morphic function and g be any entire function, then the above theorems reduces

for generalized relative growth indicators such as generalized relative order (α, β),

generalized relative type (α, β) etc. of a meromorphic function f with respect to an

entire function g.
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