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A REPRESENTATION FOR AN INVERSE GENERALIZED

FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH

GAUSSIAN PROCESS ON FUNCTION SPACE

Jae Gil Choi

Abstract. In this paper, we suggest a representation for an inverse transform of
the generalized Fourier-Feynman transform on the function space Ca,b[0, T ]. The
function space Ca,b[0, T ] is induced by the generalized Brownian motion process
with mean function a(t) and variance function b(t). To do this, we study the
generalized Fourier-Feynman transform associated with the Gaussian process Zk

of exponential-type functionals. We then establish that a composition of the Zk-
generalized Fourier-Feynman transforms acts like an inverse generalized Fourier-
Feynman transform.

1. Introduction

The present paper is an exposition of the elements of the Fourier–Feynman trans-

form theory. Little originality can be claimed for the structures offered here, but

our treatment is in several respects simpler and more direct than that in a number

of sophisticated tools.

Let C0[0, T ] denote one-parameter Wiener space. The study of the Fourier–

Wiener transform of functionals on the infinite dimensional Banach space C0[0, T ]

was initiated by Cameron and Martin [2, 3, 4]. This transform and its properties are

similar in many respects to the ordinary Fourier transform of functions on Euclidean

space Rn. Since then, many transforms which were somewhat analogous to the

Fourier–Wiener transform have been defined and developed in the literature. There

are two well-known transforms on the Wiener space C0[0, T ]. One of them is the

‘analytic’ Fourier–Feynman transform (FFT) [1, 5, 17] and the other is the integral

transform (IT) [11, 18, 19, 20]. Each of the transforms on C0[0, T ] has an inverse

transform. For an elementary survey of these transforms, see [21].
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In [5, 17], the authors obtained the existence of the L2 analytic FFT T
(2)
q (F ) for

several large classes of functionals F on C0[0, T ]. In particular, they showed that

for all real q ̸= 0,

T
(2)
−q (T

(2)
q (F ))(y) = F (y)

for scale-invariant almost every y ∈ C0[0, T ]. Thus L2 analytic FFT “T
(2)
q ” with pa-

rameter q has the inverse transform “T
(2)
−q ”. Also, in [11, 18], the authors studied the

IT of functionals F in L2(C0[0, T ]). The authors showed that for F ∈ L2(C0[0, T ])

and nonzero complex numbers α and β with |β| ≤ 1, β ̸= ±1, Re(1 − β2) > 0,

α =
√
1− β2 and −π/4 < arg(α) < π/4,

Fα′,1/βFα,βF (y) = F (y), y ∈ C0[0, T ]

where α′ =
√

1− 1/β2. That is to say, “F−1
α,β” is given by “Fiα/β,1/β”.

In [8, 9, 10, 12, 14, 15], the authors generalized the two transforms, “FFT” and

“IT”, for functionals on the very general function space Ca,b[0, T ]. The function

space Ca,b[0, T ], induced by a generalized Brownian motion process (GBMP), was

introduced by Yeh [22, 23] and was used extensively in [6, 7, 8, 9, 10, 12, 13, 14, 15].

The Wiener process used in [1, 2, 3, 4, 5, 11, 17, 18, 19, 20] is stationary in time

and is free of drift while the stochastic process used in this paper as well as in

[6, 7, 8, 9, 10, 12, 13, 14, 15, 22], is nonstationary in time and is subject to a drift

a(t). However, when a(t) ≡ 0 and b(t) = t on [0, T ], the general function space

Ca,b[0, T ] reduces to the Wiener space C0[0, T ].

By an effect of drift “a(t)” of the GBMP, the generalized Feynman integral, the

generalized FFT (GFFT) and the generalized IT (GIT) on Ca,b[0, T ] have unusual

behaviors. For a more detailed study, see [6] and the references cited therein. More-

over, unfortunately, the GFFT on Ca,b[0, T ] has no inverse transform such as the

FFT on C0[0, T ]. In order to discuss this problem, in [12], Chang, Chung and Skoug

presented a version of inverse transform of the GIT Fα,β as follows: for appropriate

functionals F on Ka,b[0, T ], the complexification of Ca,b[0, T ],

F−iα,1Fiα,1F−α/β,1/βFα,βF (y) = F (y)

for y ∈ Ka,b[0, T ], i.e.,

F−1
α,β = F−iα,1Fiα,1F−α/β,1/β.

On the other hand, the representation for an inverse transform of the ‘analytic’

GFFT have been studied [13, 15]. In order to express an inverse transform of the

GFFT, the authors suggested two singular transforms Pq and Nq of functionals on
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Ca,b[0, T ]. They then established the facts that for almost every functional F on

Ca,b[0, T ],

Pq(F )(y) = T (2)
q (F )(y) and P−1

q (F )(y) = N−q(F )(y)

for scale-invariant almost every y ∈ Ca,b[0, T ]. However, the inverse transforms of

the GFFT investigated in [13, 15] are not analytic transforms.

Recently, in order to express the analytic inverse GFFT, Chang and the current

author suggested other ‘analytic’ transform via the concept of the convolution prod-

uct of functionals on Ca,b[0, T ] in [7]. In this paper, we suggest an inverse transform

of the “GFFT associated with the Gaussian process Zk (Zk-GFFT)” on the function

space Ca,b[0, T ]. The concept of the analytic transforms studied in this paper are

not depend on the concept of the convolution product. But our general transforms

studied in this paper involve the two analytic transforms studied in [7].

2. Preliminaries

Let a(t) be an absolutely continuous real-valued function on [0, T ] with a(0) = 0

and a′(t) ∈ L2[0, T ], and let b(t) be a strictly increasing, continuously differentiable

real-valued function with b(0) = 0 and b′(t) > 0 for each t ∈ [0, T ]. The GBMP

Y determined by a(t) and b(t) is a Gaussian process with mean function a(t) and

covariance function r(s, t) = min{b(s), b(t)}. For more details, see [6, 8, 9, 14,

22, 23]. By [23, Theorem 14.2], the probability measure µ induced by Y , taking

a separable version, is supported by Ca,b[0, T ] (which is equivalent to the Banach

space of continuous functions x on [0, T ] with x(0) = 0 under the sup norm). Hence,

(Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space induced by Y where B(Ca,b[0, T ])

is the Borel σ-field of Ca,b[0, T ]. We then complete this function space to obtain

the measure space (Ca,b[0, T ],W(Ca,b[0, T ]), µ) where W(Ca,b[0, T ]) is the set of all

µ-Carathéodory measurable subsets of Ca,b[0, T ].

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable provided ρB is

W(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-invariant measurable set N is said

to be a scale-invariant null set provided µ(ρN) = 0 for all ρ > 0. A property that

holds except on a scale-invariant null set is said to hold scale-invariant almost every-

where (s-a.e.). A functional F is said to be scale-invariant measurable provided F is

defined on a scale-invariant measurable set and F (ρ · ) is W(Ca,b[0, T ])-measurable

for every ρ > 0. If two functionals F and G defined on Ca,b[0, T ] are equal s-a.e., we

write F ≈ G. Note that the relation “≈” is an equivalence relation.
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Let L2
a,b[0, T ] (see [9] and [14]) be the space of functions on [0, T ] which are

Lebesgue measurable and square integrable with respect to the Lebesgue–Stieltjes

measures on [0, T ] induced by a(·) and b(·); i.e.,

L2
a,b[0, T ] =

{
v :

∫ T

0
v2(s)db(s) < +∞ and

∫ T

0
v2(s)d|a|(s) < +∞

}
where |a|(·) denotes the total variation function of a(·). Then L2

a,b[0, T ] is a separable

Hilbert space with inner product defined by

(u, v)a,b =

∫ T

0
u(t)v(t)dm|a|,b(t) ≡

∫ T

0
u(t)v(t)d[b(t) + |a|(t)],

where m|a|,b denotes the Lebesgue–Stieltjes measure induced by |a|(·) and b(·). In

particular, note that ∥u∥a,b ≡
√
(u, u)a,b = 0 if and only if u(t) = 0 a.e. on [0, T ].

Furthermore, (L2
a,b[0, T ], ∥ · ∥a,b) is a separable Hilbert space.

Next, let

C ′
a,b[0, T ] =

{
w ∈ Ca,b[0, T ] : w(t) =

∫ t

0
z(s)db(s) for some z ∈ L2

a,b[0, T ]

}
.

For w ∈ C ′
a,b[0, T ], with w(t) =

∫ t
0 z(s)db(s) for t ∈ [0, T ], let D : C ′

a,b[0, T ] →
L2
a,b[0, T ] be defined by the formula

(2.1) Dw(t) = z(t) =
w′(t)

b′(t)
.

Then C ′
a,b ≡ C ′

a,b[0, T ] with inner product

(w1, w2)C′
a,b

=

∫ T

0
Dw1(t)Dw2(t)db(t)

is also a separable Hilbert space.

Note that the two separable Hilbert spaces L2
a,b[0, T ] and C ′

a,b[0, T ] are (topolog-

ically) homeomorphic under the linear operator given by equation (2.1).

In this paper, in addition to the conditions put on a(t) above, we now add the

condition

(2.2)

∫ T

0
|a′(t)|2d|a|(t) < +∞.

Then, the function a : [0, T ] → R satisfies the condition (2.2) if and only if a(·) is

an element of C ′
a,b[0, T ]. For more details, see [16]. Under the condition (2.2), we

observe that for each w ∈ C ′
a,b[0, T ] with Dw = z,

(w, a)C′
a,b

=

∫ T

0
Dw(t)Da(t)db(t) =

∫ T

0
z(t)

a′(t)

b′(t)
db(t) =

∫ T

0
z(t)da(t).
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3. Gaussian Processes

In order to present our results involving the analytic GFFT, we follow the expo-

sition of [7, 8].

For each w ∈ C ′
a,b[0, T ] and x ∈ Ca,b[0, T ], we let (w, x)∼ denote the Paley–

Wiener–Zygmund (PWZ) stochastic integral. It is known that for each w ∈ C ′
a,b[0, T ],

the PWZ stochastic integral (w, x)∼ exists for s-a.e. x ∈ Ca,b[0, T ]. If Dw =

z ∈ L2
a,b[0, T ] is of bounded variation on [0, T ], then the PWZ stochastic integral

(w, x)∼ equals the Riemann–Stieltjes integral
∫ T
0 z(t)dx(t). Furthermore, for each

w ∈ C ′
a,b[0, T ], (w, x)∼ is a Gaussian random variable with mean (w, a)C′

a,b
and

variance ∥w∥2C′
a,b
. Also, we note that for w, x ∈ C ′

a,b[0, T ], (w, x)
∼ = (w, x)C′

a,b
.

For each t ∈ [0, T ], let χ[0,t] denote the indicator function of the interval [0, t] and

for k ∈ C ′
a,b[0, T ] with Dk = h and with ∥k∥C′

a,b
= [

∫ T
0 h2(t)db(t)]1/2 > 0, let Zk(x, t)

be the PWZ stochastic integral

(3.1) Zk(x, t) = (D−1(hχ[0,t]), x)
∼.

Let

γk(t) =

∫ t

0
Dk(u)da(u) =

∫ t

0
h(u)da(u),

and let

βk(t) =

∫ t

0
(Dk(u))2db(u) =

∫ t

0
h2(u)db(u).

Then the stochastic process Zk : Ca,b[0, T ] × [0, T ] → R is Gaussian with mean

function ∫
Ca,b[0,T ]

Zk(x, t)dµ(x) =

∫ t

0
h(u)da(u) = γk(t)

and covariance function∫
Ca,b[0,T ]

(
Zk(x, s)− γk(s)

)(
Zk(x, t)− γk(t)

)
dµ(x)

=

∫ min{s,t}

0
h2(u)db(u) = βk(min{s, t}).

If h = Dk is of bounded variation on [0, T ], then, for all x ∈ Ca,b[0, T ], Zk(x, t)

is continuous in t. Of course if k(t) ≡ b(t), then Zb(x, t) = x(t). Furthermore, if

a(t) ≡ 0 and b(t) = t on [0, T ], then the function space Ca,b[0, T ] reduces to the

classical Wiener space C0[0, T ] and the Gaussian process (3.1) with k(t) ≡ t is an

ordinary Wiener process.
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Let C∗
a,b[0, T ] be the set of functions k in C ′

a,b[0, T ] such that Dk is continuous

except for a finite number of finite jump discontinuities and is of bounded variation

on [0, T ]. For any w ∈ C ′
a,b[0, T ] and k ∈ C∗

a,b[0, T ], let the operation ⊙ between

C ′
a,b[0, T ] and C∗

a,b[0, T ] be defined by

w ⊙ k = D−1(DwDk), i.e., D(w ⊙ k) = DwDk,

where DwDk denotes the pointwise multiplication of the functions Dw and Dk. In

this case, (C∗
a,b[0, T ],⊙) forms a commutative algebra with the identity b. For more

details, see [8].

Given any w ∈ C ′
a,b[0, T ] and k ∈ C∗

a,b[0, T ], it follows that

(w,Zk(x, ·))∼ =

∫ T

0
Dw(t)d

(∫ t

0
Dk(s)dx(s)

)
=

∫ T

0
Dw(t)Dk(t)dx(t)

= (w ⊙ k, x)∼

for s-a.e x ∈ Ca,b[0, T ]. Thus, throughout the rest of this paper, we require k to be

in C∗
a,b[0, T ] for each process Zk.

4. Generalized Fourier-Feynman Transform associated with
Gaussian Paths

We define the Zk-function space integral (namely, the function space integral

associated with the Gaussian paths Zk(x, ·)) for functionals F on Ca,b[0, T ] by the

formula

Ik[F ] ≡ Ik,x[F (Zk(x, ·))] =
∫
Ca,b[0,T ]

F (Zk(x, ·))dµ(x)

whenever the integral exists.

Throughout the rest of this paper, let C, C+ and C̃+ denote the set of complex

numbers, complex numbers with positive real part, and nonzero complex numbers

with nonnegative real part, respectively. Furthermore, for each λ ∈ C̃, λ1/2 denotes

the principal square root of λ; i.e., λ1/2 is always chosen to have positive real part,

so that λ−1/2 = (λ−1)1/2 is in C+ for all λ ∈ C̃+.

Let Zk be the Gaussian process given by (3.1) and let F be a C-valued scale-

invariant measurable functional on Ca,b[0, T ] such that the Zk-function space integral

(4.1) JF (Zk;λ) = Ik,x[F (λ−1/2Zk(x, ·))]
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exists and is finite for all λ > 0. If there exists a function J∗
F (Zk;λ) analytic on C+

such that J∗
F (Zk;λ) = JF (Zk;λ) for all λ ∈ (0,+∞), then J∗

F (Zk;λ) is defined to be

the analytic Zk-function space integral (namely, the analytic function space integral

associated with the Gaussian paths Zk(x, ·)) of F over Ca,b[0, T ] with parameter λ,

and for λ ∈ C+ we write

(4.2) Ianλk [F ] ≡ Ianλk,x [F (Zk(x, ·))] ≡
∫ anλ

Ca,b[0,T ]
F (Zk(x, ·))dµ(x) = J∗

F (Zk;λ).

Next let F be a measurable functional whose analytic Zk-function space integral

Ianλk [F ] exists for all λ ∈ C+. If the following limit exists, we call it the generalized

analytic Zk-Feynman integral (namely, the generalized analytic Feynman integral

associated with the Gaussian paths Zk(x, ·)) of F with parameter q and we write

(4.3) I
anfq
k [F ] ≡ I

anfq
k,x [F (Zk(x, ·))] = lim

λ→−iq
λ∈C+

Ianλk,x [F (Zk(x, ·))].

We are now ready to state the definition of the analytic Zk-GFFT on function

space.

Definition 4.1. Let Zk be the Gaussian process given by (3.1) and let F be a

scale-invariant measurable functional on Ca,b[0, T ] such that for all λ ∈ C+ and

y ∈ Ca,b[0, T ], the analytic Zk-function space transform

Tλ,k(F )(y) = Ianλk,x [F (y + Zk(x, ·))]

exists. For p ∈ (1, 2], we define the Lp analytic Zk-GFFT (namely, the GFFT

associated with the Gaussian paths Zk(x, ·)), T
(p)
q,k (F ) of F , by the formula,

T
(p)
q,k (F )(y) = l. i.m.

λ→−iq
λ∈C+

Tλ,k(F )(y)

if it exists; i.e., for each ρ > 0,

(4.4) lim
λ→−iq
λ∈C+

∫
Ca,b[0,T ]

∣∣Tλ,k(F )(ρy)− T
(p)
q,k (F )(ρy)

∣∣p′dµ(y) = 0

where 1/p + 1/p′ = 1. We define the L1 analytic Zk-GFFT, T
(1)
q,k (F ) of F , by the

formula

(4.5) T
(1)
q,k (F )(y) = lim

λ→−iq
λ∈C+

Tλ,k(F )(y) = I
anfq
k,x [F (y + Zk(x, ·))]

if it exists.
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We note that for 1 ≤ p ≤ 2, T
(p)
q,k (F ) is defined only s-a.e.. We also note that if

T
(p)
q,k (F ) exists and if F ≈ G, then T

(p)
q,k (G) exists and T

(p)
q,k (G) ≈ T

(p)
q,k (F ). Moreover,

from equations (4.3), (4.2) and (4.5), it follows that

I
anfq
k [F ] ≡ I

anfq
k,x [F (Zk(x, ·))] = T

(1)
q,k (F )(0)

in the sense that if either side exists, then both sides exist and equality holds.

Remark 4.2. Note that if k ≡ b on [0, T ], then the generalized analytic Zb-Feynman

integral, I
anfq
b [F ], and the Lp analytic Zb-GFFT, T

(p)
q,b (F ) agree with the previous

definitions of the generalized analytic Feynman integral and the analytic GFFT,

respectively [7, 9, 14, 15].

5. Exponential-type Functionals

Let E be the class of all functionals Ψw which have the form

(5.1) Ψw(x) = exp{(w, x)∼}

for some w ∈ C ′
a,b[0, T ] and for s-a.e. x ∈ Ca,b[0, T ]. Given q ∈ R\{0}, τ ∈ C ′

a,b[0, T ]

and k ∈ C∗
a,b[0, T ], let Eq,τ,k be the class of all functionals having the form

(5.2) Ψq,τ,k
w (x) = Ka

q,τ,kΨw(x)

for s-a.e. x ∈ Ca,b[0, T ], where Ψw is given by equation (5.1) and Ka
q,τ,k is a complex

number given by

(5.3) Ka
q,τ,k ≡ exp

{
i

2q
∥τ ⊙ k∥2C′

a,b
+ (−iq)−1/2(τ ⊙ k, a)C′

a,b

}
.

The functionals given by equation (5.2) and linear combinations (with complex co-

efficients) of the Ψq,τ,k
w ’s are called the partially exponential-type functionals on

Ca,b[0, T ]. The functionals given by (5.1) are also partially exponential-type func-

tionals because Ψq,τ,0
w (x) = Ψq,0,k

w (x) = Ψw(x) for s-a.e. x ∈ C0[0, T ].

For notational convenience, let Ψ0,τ,k
w (x) = Ψw(x) and let E0,τ,k = E . Then for

any (q, τ, k) ∈ R × C ′
a,b[0, T ] × C∗

a,b[0, T ], the class Eq,τ,k is dense in L2(Ca,b[0, T ]).

Next, let E(Ca,b[0, T ]) = SpanE . Then, using the fact that

E ≡ E0,τ,k ⊂
∪
q∈R

τ∈C′
a,b[0,T ]

k∈C∗
a,b[0,T ]

Eq,τ,k ⊂ E(Ca,b[0, T ]),
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one can see that E(Ca,b[0, T ]) = SpanEq,τ,k for every (q, τ, k) ∈ R × C ′
a,b[0, T ] ×

C∗
a,b[0, T ].

Note that every exponential-type functional is scale-invariant measurable. Since

we shall identify functionals which coincide s-a.e. on Ca,b[0, T ], E(Ca,b[0, T ]) can

be regarded as the space of all s-equivalence classes of partially exponential-type

functionals.

In our first theorem of this section, we give a formula for Zk-GFFT of exponential-

type functionals.

Theorem 5.1. Let Ψw ∈ E be given by equation (5.1). Then for all p ∈ [1, 2], all

real q ̸= 0 and k ∈ C∗
a,b[0, T ] with ∥k∥C′

a,b
> 0, the Lp analytic Zk-GFFT of Ψw,

T
(p)
q,k (Ψw) exists and is given by the formula

(5.4) T
(p)
q,k (Ψw) ≈ Ψq,w,k

w ,

where Ψq,w,k
w is given by equation (5.2) with τ replaced with w. Thus, T

(p)
q,k (Ψw) is

an element of E(Ca,b[0, T ]).

It will be helpful to establish the following lemma before giving the proof of

Theorem 5.1.

Lemma 5.2. Let Ψw be given by (5.1). Then for any ρ > 0, it follows that

(5.5)

∫
Ca,b[0,T ]

Ψw(ρZk(x, ·))dµ(x) = exp

{
ρ2

2
∥w ⊙ k∥2C′

a,b
+ ρ(w ⊙ k, a)C′

a,b

}
.

Proof of Theorem 5.1. Given y ∈ Ca,b[0, T ], first of all, using equations (4.1) with F

replaced with Ψw(y + ·), (5.1), and (5.5), it follows that for all k ∈ C∗
a,b[0, T ] \ {0}

and every λ > 0,

JΨw(y+·)(Zk;λ) = Ik,x[Ψw(y + λ−1/2Zk(x, ·))]

= exp{(w, y)∼}
∫
Ca,b[0,T ]

Ψw(λ
−1/2Zk(x, ·))dµ(x)

= exp

{
(w, y)∼ +

1

2λ
∥w ⊙ k∥2C′

a,b
+ λ−1/2(w ⊙ k, a)C′

a,b

}
.

Thus, for all λ > 0 and s-a.e. y ∈ Ca,b[0, T ], we obtain the formula

Tλ,k(Ψw)(y) = exp

{
(w, y)∼ +

1

2λ
∥w ⊙ k∥2C′

a,b
+ λ−1/2(w ⊙ k, a)C′

a,b

}
.
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But the last expression is analytic, as a function of λ, throughout C+ for s-a.e.

y ∈ Ca,b[0, T ]. Thus, in view of equation (4.5), it follows that T
(1)
q,k (Ψw) exists and is

given by the right hand side of (5.4) for all q ∈ R \ {0}.
Next, for λ ∈ C+, w ∈ C ′

a,b[0, T ] and k ∈ C∗
a,b[0, T ], let

La
λ,w,k ≡ exp

{
1

2λ
∥w ⊙ k∥2C′

a,b
+ λ−1/2(w ⊙ k, a)C′

a,b

}
.

Then, fixing p ∈ (1, 2], it follows that that for all ρ > 0 and all λ ∈ C+,∫
Ca,b[0,T ]

∣∣Tλ,k(Ψw)(ρy)−Ψq,w,k
w (ρy)

∣∣p′dµ(y)
=

∫
Ca,b[0,T ]

exp{ρp′(w, y)∼}
∣∣(La

λ,w,k −Ka
q,w,k

)∣∣p′dµ(y)
=

∣∣(La
λ,w,k −Ka

q,w,k

)∣∣p′ ∫
Ca,b[0,T ]

exp{ρp′(w, y)∼}dµ(y)

=
∣∣La

λ,w,k −Ka
q,w,k

∣∣p′ exp{ρ2(p′)2

2
∥w∥2C′

a,b
+ ρp′(w, a)C′

a,b

}
.

Clearly, La
λ,w,k → Ka

q,w,k, in the complete space C, whenever λ → −iq through C+.

Thus, in view of equation (4.4), we obtain equation (5.4) for all p ∈ (1, 2]. �

Theorem 5.3. Given any p ∈ [1, 2], q ∈ R\{0} and k ∈ C∗
a,b[0, T ] with ∥k∥C′

a,b
> 0,

the Lp analytic Zk-GFFT, T
(p)
q,k : E(Ca,b[0, T ]) → E(Ca,b[0, T ]) is an onto transform.

Proof. We first note that given any functional F in E(Ca,b[0, T ]), F can be written

as

(5.6) F ≈
n∑

j=1

cjΨwj

for a finite sequence {w1, . . . , wn} in C ′
a,b[0, T ] and a sequence {c1, . . . , cn} in C\{0}

since E(Ca,b[0, T ]) = SpanE . We next note that for every (q, w, k) ∈ R×C ′
a,b[0, T ]×

C∗
a,b[0, T ], the complex number Ka

q,w,k given by (5.3) with τ replaced with w is

nonzero. Thus, using the linearity of the analytic Zk-GFFT T
(p)
q,k , (5.4), (5.3), and

(5.2), it follows that for every (q, w, k) ∈ R× C ′
a,b[0, T ]× C∗

a,b[0, T ],

T
(p)
q,k ((K

a
q,w,k)

−1Ψw) ≈ (Ka
q,w,k)

−1T
(p)
q,k (Ψw) ≈ (Ka

q,w,k)
−1Ψq,w,k

w (x) ≈ Ψw

where (Ka
q,w,k)

−1 denotes the reciprocal number of Ka
q,w,k. Using this and the lin-

earity of T
(p)
q,k , again, it follows that for every functional F ∈ E(Ca,b[0, T ]) given by
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equation (5.6),

T
(p)
q,k

( n∑
j=1

cj(K
a
q,wj ,k

)−1Ψwj

)
≈ F.

Hence the theorem is proved. �

6. A Representation for the Inverse GFFT

In this section, we present a representation of the inverse transform of the Zk-

GFFT for functionals F in E(Ca,b[0, T ]). To do this we first investigate the iterated

GFFT associated with Gaussian paths.

Lemma 6.1 below follows easily from (5.4), (5.2), and the fact that the space

E(Ca,b[0, T ]) is the linear span of the exponential-type functionals.

Lemma 6.1. Let (k1, . . . , km) be a sequence of nonzero functions in C∗
a,b[0, T ], and

let Ψw ∈ E be given by (5.1). Then for all p ∈ [1, 2] and all real numbers q1, . . . , qm,

the iterated analytic GFFT of Ψ exists and is given by the formula

T
(p)
qm,km

(
T
(p)
qm−1,km−1

(
· · ·

(
T
(p)
q1,k1

(Ψw)
)
· · ·

))
(y) = exp{(w, y)∼}

( m∏
l=1

Ka
ql,w,kl

)
for s-a.e. y ∈ Ca,b[0, T ], where Ka

ql,w,kl
is given by equation (5.3) with (q, τ, k)

replaced with (ql, w, kl) for each l ∈ {1, . . . ,m}.

The observations in (1) and (2) below will be very useful in the representation of

GFFTs associated Gaussian processes.

(1) Let F be an element of E(Ca,b[0, T ]). Applying equation (5.6), one can see

that the iterated analytic GFFT of F , T
(p)
qm,km

(T
(p)
qm−1,km−1

(· · · (T (p)
q1,k1

(F )) · · · )), exists.
Thus for each functional F ∈ E(Ca,b[0, T ]) given by equation (5.6), it follows that

(6.1)

T
(p)
qm,km

(
T
(p)
qm−1,km−1

(
· · ·

(
T
(p)
q1,k1

(F )
)
· · ·

))
(y)

= exp{(w, y)∼}
n∑

j=1

cj

( m∏
l=1

Ka
ql,wj ,kl

)
for s-a.e. y ∈ Ca,b[0, T ].

(2) Let p ∈ [1, 2] be fixed and let Ψw ∈ E be given by (5.1). Then, in view of

Theorem 5.1, we can see that for all nonzero real q, the analytic GFFTs,

T
(p)
q,k (Ψw), T

(p)
−q,k(T

(p)
q,k (Ψw)), T

(p)
q,−k(T

(p)
−q,k(T

(p)
q,k (Ψw))),
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and

T
(p)
−q,−k(T

(p)
q,−k(T

(p)
−q,k(T

(p)
q,k (Ψw))))

all exist. Furthermore, it follows that

T
(p)
−q,−k

(
T
(p)
q,−k

(
T
(p)
−q,k

(
T
(p)
q,k (Ψw)

)))
(y)

= exp{(w, y)∼}Ka
−q,w,−kK

a
q,w,−kK

a
−q,w,kK

a
q,w,k

= Ψw(y)

for s-a.e. y ∈ Ca,b[0, T ].

In view of Lemma 6.1 and the observation above, we have the following assertion.

Theorem 6.2. Let p ∈ [1, 2] be given and let F be an element of E(Ca,b[0, T ]). Then

for all k ∈ C∗
a,b[0, T ] \ {0} and all nonzero real q,

(6.2) T
(p)
−q,−k

(
T
(p)
q,−k

(
T
(p)
−q,k(T

(p)
q,k (F ))

))
≈ F.

Thus we have

{T (p)
q,k }

−1 = T
(p)
−q,−k ◦ T

(p)
q,−k ◦ T

(p)
−q,k.

Moreover, we have the six possibilities for the inverse transform of T
(p)
q,k :

(6.3)

T
(p)
−q,−k ◦ T

(p)
q,−k ◦ T

(p)
−q,k = T

(p)
−q,−k ◦ T

(p)
−q,k ◦ T

(p)
q,−k

= T
(p)
q,−k ◦ T

(p)
−q,−k ◦ T

(p)
−q,k = T

(p)
q,−k ◦ T

(p)
−q,k ◦ T

(p)
−q,−k

= T
(p)
−q,k ◦ T

(p)
−q,−k ◦ T

(p)
q,−k = T

(p)
−q,k ◦ T

(p)
q,−k ◦ T

(p)
−q,−k

on E(Ca,b[0, T ]).

7. Comments with the Previous Works

7.1. With the previous work on the function space Ca,b[0, T ]: As mentioned

in Remark 4.2, the Lp analytic GFFT T
(p)
q studied in [9, 14, 15] can be considered

as the Lp analytic Zb-GFFT T
(p)
q,b . In [7], to obtain an inverse transform of the L1

analytic Zb-GFFT, the authors defined an L1-type transform T−
q . Given a functional

F on Ca,b[0, T ], the L1 analytic transform T−
q (F ) was defined as follows:

T−
q (F )(y) =

∫ anfq

Ca,b[0,T ]
F (y − x)dµ(x).

This deliberate structure is suggested on the fact that∫
Ca,b[0,T ]

F (x)dµ(x) ̸=
∫
Ca,b[0,T ]

F (−x)dµ(x)



REPRESENTATION FOR INVERSE GENERALIZED FOURIER-FEYNMAN TRANSFORM 293

for almost every functional F on Ca,b[0, T ]. However, in view of Definition 4.1, one

can see that

(7.1) T (1)
q (F ) = T

(1)
q,b (F )

and

(7.2) T−
q (F ) = T

(1)
q,−b(F )

for functionals F on Ca,b[0, T ]. Furthermore, when we use the right hand sides of

equations (7.1) and (7.2), respectively, we can construct an inverse transform of the

Lp analytic GFFT, T
(p)
q (F ) of F in E(Ca,b[0, T ]), as presented Theorem 6.2, for all

p ∈ [1, 2].

7.2. With the previous work on the Wiener space C0[0, T ]: In the case that

a(t) ≡ 0 and b(t) = t on [0, T ], the function space Ca,b[0, T ] reduces to the Wiener

space C0[0, T ]. In this case, it also follows that

C ′
a,b[0, T ] ≡ C ′

0[0, T ]

=

{
τ : τ(t) =

∫ t

0
v(s)ds for some v ∈ L2[0, T ]

}
= {τ : τ is absolutely continuous on [0, T ] with Dτ(0) = 0}

and

C∗
a,b[0, T ] ≡ C∗

0 [0, T ] = {k ∈ C∗
0 [0, T ] :Dk is right continuous and

of bounded variation on [0, T ]}

where D is the operator given by equation (2.1) with b(t) = t. Furthermore, one

can see that the complex number Ka
q,τ,k given by (5.3) can be rewritten by

K0
q,τ,k ≡ exp

{
i

2q
∥τ ⊙ k∥2C′

0

}
for all nonzero real q, τ ∈ C ′

0[0, T ] and k ∈ C∗
0 [0, T ].

Using this, one can see that for all nonzero real q, all p ∈ [1, 2], all k ∈ C∗
0 [0, T ]

with ∥k∥C′
0
> 0, and every Ψw ∈ E (and hence every F ∈ E(C0[0, T ])),

T
(p)
−q,−k

(
T
(p)
q,−k

(
T
(p)
−q,k(Ψw)

))
(y)

= exp{(w, y)∼}K0
−q,w,−kK

0
q,w,−kK

0
−q,w,k

= exp{(w, y)∼}K0
−q,w,k

= T
(p)
−q,k(Ψw)(y)



294 Jae Gil Choi

for s-a.e. y ∈ C0[0, T ]. Thus, in view of equation (6.2), it follows that

(7.3) T
(p)
−q,k(T

(p)
q,k (F )) ≈ T

(p)
−q,−k

(
T
(p)
q,−k

(
T
(p)
−q,k(T

(p)
q,k (F )))

)
≈ F,

i.e.,

{T (p)
q,k }

−1(F ) ≈ T
(p)
−q,k(F )

for every exponential-type functionals F in E(C0[0, T ]).

On the other hand, given an exponential-type functional F in E(C0[0, T ]), one

can also see that for all nonzero real q and all nonzero functions k in C∗
0 [0, T ],

T
(p)
q,k (F ) ≈ T

(p)
q,−k(F ).

Using this and applying (6.1) with Ka
ql,wj ,kl

replaced with K0
ql,wj ,kl

, it follows that

(7.4) T
(p)
q,−k(T

(p)
q,k (F )) ≈ T

(p)
q/2,k(F )

for all F ∈ E(Ca,b[0, T ]). Next using the second expression of (6.3), (7.4) and (7.3),

it follows that
T
(p)
−q,−k

(
T
(p)
q,−k

(
T
(p)
−q,k

(
T
(p)
q,k (F )

)))
≈ T

(p)
−q,−k

(
T
(p)
−q,k

(
T
(p)
q,−k

(
T
(p)
q,k (F )

)))
≈ T

(p)
−q/2,−k

(
T
(p)
q/2,k(F )

)
≈ F

for all functionals F in E(C0[0, T ]).

Frankly speaking, the fundamental relations (7.3) and (7.4) are based on the fact

that ∫
C0[0,T ]

F (x)dmw(x) =

∫
C0[0,T ]

F (−x)dmw(x)

for every measurable functional F on C0[0, T ].

Remark 7.1. In view of the simple survey above, we can emphasize that the drift

term a(t) of the GBMP plays a prominent role in the existence of the inverse GFFT

for the functionals F of the paths of the GBMP.
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