DOI QR코드

DOI QR Code

A Non-annotated Recurrent Neural Network Ensemble-based Model for Near-real Time Detection of Erroneous Sea Level Anomaly in Coastal Tide Gauge Observation

비주석 재귀신경망 앙상블 모델을 기반으로 한 조위관측소 해수위의 준실시간 이상값 탐지

  • LEE, EUN-JOO (Department of Oceanography, Inha University) ;
  • KIM, YOUNG-TAEG (Oceanographic Forecast Division, Korea Hydrographic and Oceanographic Agency) ;
  • KIM, SONG-HAK (Department of Oceanography, Inha University) ;
  • JU, HO-JEONG (Department of Oceanography, Inha University) ;
  • PARK, JAE-HUN (Department of Oceanography, Inha University)
  • 이은주 (인하대학교 해양과학과) ;
  • 김영택 (국립해양조사원 해양예보과) ;
  • 김송학 (인하대학교 해양과학과) ;
  • 주호정 (인하대학교 해양과학과) ;
  • 박재훈 (인하대학교 해양과학과)
  • Received : 2021.09.15
  • Accepted : 2021.11.23
  • Published : 2021.11.30

Abstract

Real-time sea level observations from tide gauges include missing and erroneous values. Classification as abnormal values can be done for the latter by the quality control procedure. Although the 3𝜎 (three standard deviations) rule has been applied in general to eliminate them, it is difficult to apply it to the sea-level data where extreme values can exist due to weather events, etc., or where erroneous values can exist even within the 3𝜎 range. An artificial intelligence model set designed in this study consists of non-annotated recurrent neural networks and ensemble techniques that do not require pre-labeling of the abnormal values. The developed model can identify an erroneous value less than 20 minutes of tide gauge recording an abnormal sea level. The validated model well separates normal and abnormal values during normal times and weather events. It was also confirmed that abnormal values can be detected even in the period of years when the sea level data have not been used for training. The artificial neural network algorithm utilized in this study is not limited to the coastal sea level, and hence it can be extended to the detection model of erroneous values in various oceanic and atmospheric data.

상시 관측되는 조위관측소 해수위 자료는 결측값과 오측값을 포함하고 있으며, 그 중 오측 값은 이상값으로 분류되는 전처리 대상이다. 이러한 오측을 제거하기 위해 대표적으로 3𝜎 (three standard deviations) 규칙이 적용되어왔으나, 기상이변 등에 의한 극값이 존재하거나 3𝜎 범위 안에서도 오측이 존재하는 해수위 자료에는 그 적용이 어렵다. 본 연구에서 설계된 모델은 오측에 대한 사전 정보가 필요하지 않은 비주석 학습으로 구성되며, 재귀신경망과 앙상블 기법을 이용함으로써 실시간으로 수집되는 해수위 자료가 오측일 가능성을 발생한지 20분 이내로 제시한다. 검증이 완료된 모델은 평시 및 기상이변시의 정상값과 오측값을 잘 분리하며, 학습이 이뤄지지 않은 연도의 해수위 자료에서도 이상값 탐지가 가능함을 확인하였다. 본 연구의 관측 이상치 탐지 알고리즘은 조위관측소 해수위에 국한되지 않고 다양한 해양 및 대기자료의 이상치 탐지 인공신경망 모델에 확장 적용할 수 있다.

Keywords

Acknowledgement

본 연구는 국립해양조사원의 「2021년 해양예보정보 종합분석 및 특화 해양예보」 사업의 지원을 받아 수행되었습니다.

References

  1. 국립해양조사원(KHOA), 2021. "바다누리 해양정보 서비스". http://www.khoa.go.kr/oceangrid/gis/category/reference/distribution.
  2. 김마가, 최진용, 방재홍, 이재주, 2019. 임계치 모형과 인공신경망 모형을 이용한 실시간 저수위 수위자료의 이상치 탐지. 한국농공학회, 61(1): 107-120. https://doi.org/10.5389/KSAE.2019.61.1.107
  3. Bell, C., J.M. Vassie and P.L. Woodworth, 1999. POL/PSMSL Tidal Analysis Software Kit 2000 (TASK-2000). edited by 2000UKCCMS Proudman Oceanographic Laboratory Permanent Service for Mean Sea Level.
  4. Castelao, G.P., 2021. A machine learning approach to quality control oceanographic data. Computers & Geosciences, 155.
  5. Fourrier, M., L. Coppola, H. Claustre, F. D'Ortenzio, R. Sauzede and J.-P. Gattuso, 2020. A Regional Neural Network Approach to Estimate Water-Column Nutrient Concentrations and Carbonate System Variables in the Mediterranean Sea: CANYON-MED. Frontiers in Marine Science 7.
  6. Goyal, S., T. Jain and Dr. N. Tyagi, 2018. Artificial Neural Network: A Review and its Application in Managing Water Quality Control. International Journal of Scientific Development and Research, 3(6).
  7. Guan, Y. and T. Plotz, 2017. Ensembles of Deep LSTM Learners for Activity Recognition Using Wearables. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(2): 1-28. https://doi.org/10.1145/3090076
  8. Hochreiter, S. and J. Schmidhuber, 1997. Long Short-Term Memory. Neural Computation, 9(8): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  9. Just, A.C., M.M. De Carli, A. Shtein, M. Dorman, A. Lyapustin and I. Kloog, 2018. Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA. Remote Sens (Basel), 10(5).
  10. Kim, H.J., S.M. Park, B.J. Choi, S.H. Moon and Y.H. Kim, 2020. Spatiotemporal Approaches for Quality Control and Error Correction of Atmospheric Data through Machine Learning. Comput Intell Neurosci, 2020: 7980434.
  11. Linares-Rodriguez, A., J.A. Ruiz-Arias, D. Pozo-Vazquez and J. Tovar-Pescador, 2013. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images. Energy, 61: 636-645. https://doi.org/10.1016/j.energy.2013.09.008
  12. Liu, J., J. Gu, H. Li and K.H. Carlson, 2020. Machine learning and transport simulations for groundwater anomaly detection. Journal of Computational and Applied Mathematics, 380.
  13. Lopez-Lineros, M., J. Estevez, J.V. Giraldez and A. Madueno, 2014. A new quality control procedure based on non-linear autoregressive neural network for validating raw river stage data. Journal of Hydrology, 510: 103-109. https://doi.org/10.1016/j.jhydrol.2013.12.026
  14. Miau, S. and W.-H. Hung, 2020. River Flooding Forecasting and Anomaly Detection Based on Deep Learning. IEEE Access 8:198384-198402. https://doi.org/10.1109/access.2020.3034875
  15. Murray, M.T., 1964. A General Method for the Analysis of Hourly Heights of Tide. International Hydrographic Review, 41(2): 91-101.
  16. Omar, S., A. Ngadi and H.H. Jebur, 2013. Machine Learning Techniques for Anomaly Detection: An Overview. International Journal of Computer Applications, 79(2).
  17. Opitz, D. and R. Maclin, 1999. Popular Ensemble Learning: An Empirical Study. Journal of Artificial Intelligence Research, 11: 169-98. https://doi.org/10.1613/jair.614
  18. Pastore, V.P., T.G. Zimmerman, S.K. Biswas and S. Bianco, 2020. Annotation-free learning of plankton for classification and anomaly detection. Sci Rep, 10(1): 12142. https://doi.org/10.1038/s41598-020-68662-3
  19. Russell, S. and P. Norvig, 2010. Artificial Intelligence: A Modern Approach, Third Edition. Upper Saddle River, New Jersey: Prentice Hall, c2010.
  20. Saini, S. and Preeti, 2015. Advance Applications of Artificial Neural Network. Journal of Basic and Applied Engineering Research, 2(11): 1001-1005.
  21. Sciuto, G., B. Bonaccorso, A. Cancelliere and G. Rossi, 2009. Quality control of daily rainfall data with neural networks. Journal of Hydrology, 364(1-2): 13-22. https://doi.org/10.1016/j.jhydrol.2008.10.008
  22. UNESCO (United Nations Educational, Scientific and Cultural Organization). 2013. Ocean Data Standards, Vol.3: Recommendation for a Quality Flag Scheme for the Exchange of Oceanographic and Marine Meteorological Data. (IOC Manuals and Guides, 54, Vol. 3.).
  23. Wang, Y., L. Han, W. Liu, S. Yang and Y. Gao, 2019. Study on wavelet neural network based anomaly detection in ocean observing data series. Ocean Engineering, 186.
  24. Yu, J.B. and L.F. Xi, 2009. A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes. Expert Systems with Applications, 36(1): 909-921. https://doi.org/10.1016/j.eswa.2007.10.003