DOI QR코드

DOI QR Code

Production and characterization of rice starch from stale rice using improved enzymatic digestion method

개선된 효소소화법에 의한 고미로부터 쌀전분의 생산 및 특성

  • Kim, Reejae (Department of Food Science and Biotechnology, Graduate School, Kyonggi University) ;
  • Lim, SongI (Department of Food Science and Biotechnology, Graduate School, Kyonggi University) ;
  • Kim, Hyun-Seok (Department of Food Science and Biotechnology, Graduate School, Kyonggi University)
  • 김이재 (경기대학교 일반대학원 식품생물공학과) ;
  • 임송이 (경기대학교 일반대학원 식품생물공학과) ;
  • 김현석 (경기대학교 일반대학원 식품생물공학과)
  • Received : 2021.11.04
  • Accepted : 2021.11.16
  • Published : 2021.12.31

Abstract

The objective of this study was to investigate the physicochemical properties of rice starch extracted from stale rice using alkaline steeping (AKL) and improved enzymatic digestion (iENZ) methods. The crude protein content (0.5-0.7%) of stale rice starch (SRS) was less than 1% by iENZ, but not so when measured by the existing ENZ methods. SRS is an intermediate amylose rice starch. AKL-SRS and iENZ-SRS exhibited typical A-type crystal packing arrangements with similar relative crystallinities. iENZ-SRS showed higher gelatinization onset and peak temperatures with a narrower gelatinization temperature range, compared to those of AKL-SRS, indicating that iENZ annealed SRS. Thus, iENZ-SRS exhibited lower swelling power and solubility, and higher pasting viscosities with delayed viscosity development. Overall, the use of stale rice as a rice starch source could make economical production of rice starch possible, and iENZ may diversify rice starch characteristics, which expands the utilization of rice starch in food and non-food industries.

정미와 쇄미로부터 상업적 기준에 부합하는 쌀전분을 생산하는 효소소화법을 오래 묵은 쌀(고미)에 적용 가능한지를 조사하였다. 선행된 연구에서 다층 여과법을 채택한 효소소화법은 고미로부터 높은 조단백질 함량(3.6-4.1%)의 쌀전분이 배출되어 상업적으로 활용이 가능한 쌀전분을 생산할 수 없었다. 그래서 기존 효소소화법의 다층 여과법 대신에 효소반응 고미 침전물 상층부의 부드러운 층(쌀단백 잔류물, tailed 전분과 섬유소 등)을 흡입하여 제거하는 방식을 채택하여 개선된 효소소화법(iENZ, improved enzymatic digestion method)을 구축하였다. iENZ에 따른 고미전분의 조단백질 함량은 0.5-0.7%로, 알칼리침지법(AKL, akaline steeping method)에 따른 고미전분의 것과 유사하였으며 상업적인 생전분의 조단백질 함량 기준(<1%)을 충족하였다. 한편 iENZ에 따른 고미전분을 상업적인 쌀전분으로 활용할 수 있는지를 조사하기 위해 AKL과 iENZ에 따른 고미전분의 물리화학적 특성을 조사하였다. 고미전분들의 아밀로스 함량은 본 연구에 사용된 고미가 멥쌀로부터 유래되었다는 것을 가리킨다. AKL보다 iENZ에 따른 고미전분의 아밀로스 함량이 전반적으로 낮았는데, 이는 쌀이 오래 저장되면서 형성된 유리아미노산과 쌀전분의 아밀로스사이의 아밀로스-지질 복합체의 형성 때문이다. AKL과 iENZ에 의한 고미전분들은 전형적인 A형 결정 패턴을 보였으며, 추출정제법에 따른 X선 회절 패턴과 상대결정도의 차이는 관찰되지 않았다. iENZ에 따른 고미전분은 AKL에 의한 것보다 좁은 호화온도범위를 보이면서 높은 호화온도와 낮은 호화엔탈피를 나타내었다. 이것은 iENZ에 따라 고미로부터 쌀전분을 추출·정제하는 동안 고미전분 내에서 annealing이 일어났기 때문이다. iENZ에 의해 발생한 annealing은 고미전분의 팽윤력과 용해도를 낮췄으며, 페이스팅 점도 발달을 지연시키면서도 높은 수준의 페이스팅 점도를 형성하였다. 전반적으로 iENZ는 고미뿐만 아니라 정미와 쇄미에서도 고순도의 쌀전분을 생산할 수 있는 방법이었으며, 고미는 쌀전분 원료로 사용 가능하였다. iENZ는 쌀전분의 추출과 동시에 쌀전분을 물리적으로 변형하는 방법으로 생각되며, 이 방법에 따라 제조된 쌀전분은 쌀전분의 물리화학적 특성의 다양성을 확대할 수 있을 것으로 생각된다.

Keywords

Acknowledgement

본 연구는 농림축산식품부 고부가가치식품기술개발사업(과제번호 318029-3)에 의해 이루어진 연구결과의 일부이며 이에 감사드립니다. 또한 본 연구는 2021년 경기대학교 대학원 연구원장학생 장학금 지원에 의해 수행되었습니다.

References

  1. AOAC. Official Method of Analysis. 17th ed. AOAC International, Arlington, VA, USA (2000)
  2. Bae JE, Hong JS, Baik MY, Choi HD, Choi HW, Kim HS. Impact of starch granule-associated surface and channel proteins on physicochemical properties of corn and rice starches. Carbohyd. Polym. 250: 116908 (2020) https://doi.org/10.1016/j.carbpol.2020.116908
  3. Cheetham NWH, Tao L. 1998. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohyd. Polym. 36: 277-284. https://doi.org/10.1016/S0144-8617(98)00007-1
  4. Choi JM, Park CS, Baik MY, Kim HS, Choi YS, Choi HW, Seo DH. Enzymatic extraction of starch from broken rice using freeze-thaw infusion with food-grade protease. Starch-Starke 70: 1700007 (2018) https://doi.org/10.1002/star.201700007
  5. Chrastil J. 1987. Improved colorimetric determination of amylose in starches or flours. Carbohyd. Res. 159: 154-158. https://doi.org/10.1016/S0008-6215(00)90013-2
  6. Fonseca LM, El Halal SLM, Dias ARG, Zavareze EDR. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohyd. Polym. 274: 118665 (2021) https://doi.org/10.1016/j.carbpol.2021.118665
  7. Guraya HS, James C, Champagne ET. Physical basis for separation of rice starch using various density gradient systems and its effect on starch recovery, purity, and pasting properties. Starch-Starke 55: 450-456 (2003) https://doi.org/10.1002/star.200300207
  8. Jacobs H, Eerlingen RC, Delcour JA. Factors affecting the viscoamylograph and rapid visco-analyser evaluation of the impact of annealing on starch pasting properties. Starch-Starke 48: 266-270 (1996) https://doi.org/10.1002/star.19960480707
  9. Kim HS, Huber KC. Physicochemical properties and amylopectin fine structures of A- and B-type granules of waxy and normal soft wheat starch. J. Cereal Sci. 51: 256-264 (2010) https://doi.org/10.1016/j.jcs.2009.11.015
  10. Kim J, Jeong JB, Kim HS. Impact of protein and lipid contents on the physical property of dried biji powder. Food Eng. Prog. 22: 344-352 (2018) https://doi.org/10.13050/foodengprog.2018.22.4.344
  11. Kim EJ, Kim HS. Physicochemical properties of dehydrated potato parenchyma cells with ungelatinized and gelatinized starches. Carbohyd. Polym. 117: 845-852 (2015) https://doi.org/10.1016/j.carbpol.2014.10.038
  12. Kim R, Lim S, Kim HS. Production and characterization of rice starch from broken rice using alkaline steeping and enzymatic digestion methods. Korean J. Food Sci. Technol. 53: in press (2021)
  13. Kim DJ, Oh SK, Hong HC, Yoon MR, Lee JH, Choi IS, Kim YK. Variation of rice quality of milled rice according to storage period. Korean J. Crop Sci. 56: 342-348 (2011) https://doi.org/10.7740/KJCS.2011.56.4.342
  14. Kim R, Oh J, Kim HS. Isolation and physicochemical properties of rice starch from rice flour using protease. Food Eng. Prog. 23: 193-199 (2019) https://doi.org/10.13050/foodengprog.2019.23.3.193
  15. Kumar I, Khush GS. Genetic analysis of different amylose levels in rice. Crop Sci. 27: 1167-1172 (1987) https://doi.org/10.2135/cropsci1987.0011183X002700060016x
  16. Lee H, Kim HS. Pasting and paste properties of waxy rice starch as affected by hydroxypropyl methylcellulose and its viscosity. Int. J. Biol. Macromol. 153: 1202-1210 (2020) https://doi.org/10.1016/j.ijbiomac.2019.10.250
  17. Lim ST, Lee JH, Shin DH, Lim HS. Comparison of protein extraction solutions for rice starch isolation and effects of residual protein content on starch pasting properties. Starch-Starke 51: 120-125 (1999) https://doi.org/10.1002/(SICI)1521-379X(199904)51:4<120::AID-STAR120>3.0.CO;2-A
  18. Lumdubwong N, Seib PA. Rice starch isolation by alkaline protease digestion of wet-milled rice flour. J. Cereal Sci. 31: 63-74 (2000) https://doi.org/10.1006/jcrs.1999.0279
  19. Puchongkavarin H, Varavinit S, Bergthaller W. Comparative study of pilot scale rice starch production by an alkaline and an enzymatic process. Starch-Starke 57: 134-144 (2005) https://doi.org/10.1002/star.200400279
  20. de Souza D, Sbardelotto AF, Ziegler DR, Marczak LDF, Tessaro IC. Characterization of rice starch and protein obtained by a fast alkaline extraction method. Food Chem. 191: 36-44 (2016) https://doi.org/10.1016/j.foodchem.2015.03.032
  21. Wang L, Wang YJ. Rice starch isolation by neutral protease and high-intensity ultrasound. J. Cereal Sci. 39: 291-296 (2004) https://doi.org/10.1016/j.jcs.2003.11.002
  22. Wang L, Zhang C, Chen Z, Wang X, Wang K, Li Y, Wang R, Luo X, Li Y, Li J. Effect of annealing on the physico-chemical properties of rice starch and the quality of rice noodles. J. Cereal Sci. 84: 125-131 (2018) https://doi.org/10.1016/j.jcs.2018.10.004
  23. Zavareze ER, Dias ARG. Impact of heat-moisture treatment and annealing in starches: A review. Carbohyd. Polym. 83: 317-328 (2011) https://doi.org/10.1016/j.carbpol.2010.08.064