DOI QR코드

DOI QR Code

Cu2ZnSn(S,Se)4(CZTSSe) 흡수층의 급속 열처리 공정 온도 미세 조절을 통한 특성 향상

Improvement in Performance of Cu2ZnSn(S,Se)4 Absorber Layer with Fine Temperature Control in Rapid Thermal Annealing System

  • 김동명 (전남대학교 신소재공학과, 광전자융합기술연구소) ;
  • 장준성 (전남대학교 신소재공학과, 광전자융합기술연구소) ;
  • 비제이 가라데 (전남대학교 신소재공학과, 광전자융합기술연구소) ;
  • 김진혁 (전남대학교 신소재공학과, 광전자융합기술연구소)
  • Kim, Dong Myeong (Department of Materials Science and Engineering, Chonnam National University) ;
  • Jang, Jun Sung (Department of Materials Science and Engineering, Chonnam National University) ;
  • Karade, Vijay Chandrakant (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Jin Hyeok (Department of Materials Science and Engineering, Chonnam National University)
  • 투고 : 2021.10.08
  • 심사 : 2021.10.18
  • 발행 : 2021.11.27

초록

Cu2ZnSn(S,Se)4 (CZTSSe) based thin-film solar cells have attracted growing attention because of their earth-abundant and non-toxic elements. However, because of their large open-circuit voltage (Voc)-deficit, CZTSSe solar cells exhibit poor device performance compared to well-established Cu(In,Ga)(S,Se)2 (CIGS) and CdTe based solar cells. One of the main causes of this large Voc-deficit is poor absorber properties for example, high band tailing properties, defects, secondary phases, carrier recombination, etc. In particular, the fabrication of absorbers using physical methods results in poor surface morphology, such as pin-holes and voids. To overcome this problem and form large and homogeneous CZTSSe grains, CZTSSe based absorber layers are prepared by a sputtering technique with different RTA conditions. The temperature is varied from 510 ℃ to 540 ℃ during the rapid thermal annealing (RTA) process. Further, CZTSSe thin films are examined with X-ray diffraction, X-ray fluorescence, Raman spectroscopy, IPCE, Energy dispersive spectroscopy and Scanning electron microscopy techniques. The present work shows that Cu-based secondary phase formation can be suppressed in the CZTSSe absorber layer at an optimum RTA condition.

키워드

과제정보

This work was supported by the Fundamental Development Program (C1-2403) of the Korea Institute of Energy Research (KIER) and partially supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024334).

참고문헌

  1. W. Wang, M. T. Winkler. O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, Adv. Energy Mater., 4, 1301465 (2013). https://doi.org/10.1002/aenm.201301465
  2. S. Siebentritt and S. Schorr, Prog. Photovolt.: Res. Appl., 20, 512 (2012). https://doi.org/10.1002/pip.2156
  3. I. K. Nakazawa, Jpn. J. Appl. Phys., 27, 2094 (1988). https://doi.org/10.1143/JJAP.27.2094
  4. T. M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich and H. W. Schock, Proceedings of the 14th European Photovoltaic Solar Energy Conference (1997).
  5. NREL: Manufacturing Analysis - Supply Constraints Analysis. On the Web. Retrieved December 21, 2014 from https://www.nrel.gov/
  6. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato and H. Sugimoto, IEEE J. Photovolt., 9, 1863 (2019). https://doi.org/10.1109/jphotov.2019.2937218
  7. V. Fthenakis, Renew. Sustain. Energ. Rev., 13, 2746 (2009). https://doi.org/10.1016/j.rser.2009.05.001
  8. S. Siebentritt, Thin Solid Films, 535, 1 (2013). https://doi.org/10.1016/j.tsf.2012.12.089
  9. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan and Q. Qiao, Energ. Environ. Sci., 8, 3134 (2015). https://doi.org/10.1039/C5EE02153G
  10. S. Schorr, G. Gurieva, M. Guc, M. Dimitrevska, A. P. Rodriguez, V. I. Roca, C. S. Schnohr, J. R. Kim, W. Jo and J. M. Merino, J. Phys : Energy, 2, 012002 (2020). https://doi.org/10.1088/2515-7647/ab6742
  11. S. Chen, X. G. Gong, A. Walsh and S. H. Wei, Appl. Phys. Lett., 94, 041903 (2009). https://doi.org/10.1063/1.3074499
  12. J. R. Kim, G. Y. Kim, T. T. T. Nguyen, S. H. Yoon, Y. Kim, S. Y. Lee, M. Y. Kim, D. H. Cho, Y. D. Chung, J. H. Lee, M. J. Seong and W. Jo, Phys. Chem. Chem. Phys., 22, 7597 (2020). https://doi.org/10.1039/c9cp06537g
  13. B. J. Stanbery, Crit. Rev. Solid State Mater. Sci., 27, 73 (2002). https://doi.org/10.1080/20014091104215
  14. C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J. M. Cairney, N. J. Ekins-Daukes, Z. Hameiri, J. A. Stride, S. Chen, M. A. Green and X. Hao, Nat. Energy, 3, 764 (2018). https://doi.org/10.1038/s41560-018-0206-0
  15. K. Rudisch, Y. Ren, C. P. Bjorkman and J. Scragg, Appl. Phys. Lett., 108, 231902 (2016). https://doi.org/10.1063/1.4953349
  16. S. M. Pawar, A. I. Inamdar, B. S. Pawar, K. V. Gurav, S. W. Shin, X. Yanjun, S. S. Kolekar, J. H. Lee, J. H. Kim and H. S. Im, Mater. Lett., 118, 76 (2014). https://doi.org/10.1016/j.matlet.2013.12.047
  17. S. Temgoua, R. Bodeux and N. Naghavi, Sol. Energy Mater. Sol. Cells, 172, 160 (2017). https://doi.org/10.1016/j.solmat.2017.07.031
  18. J. J. Scragg, J. T. Watjen, M. Edoff, T. Ericson, T. Kubart and C. P. Bjorkman, J. Am. Chem. Soc., 134, 19330 (2012). https://doi.org/10.1021/ja308862n
  19. D. H. Son, D, H, Kim, S. N. Park, K. J. Yang, D. H. Nam, H. S. Cheong and J. K. Kang, Chem. Mater., 27, 5180 (2015). https://doi.org/10.1021/acs.chemmater.5b01181
  20. X. Yin, C. Tang, L. Sun, Z. Shen and H. Gong, Chem. Mater., 26, 2005 (2014). https://doi.org/10.1021/cm403423e
  21. J. Marquez, M. Neuschitzer, M. Dimitrievska, R. Gunder, S. Haass, M. Werner, Y. E. Romanyuk, S. Schorr, N. M. Pearsall and I. Forbes, Sol. Energy Mater. Sol. Cells, 144, 579 (2016). https://doi.org/10.1016/j.solmat.2015.10.004
  22. M. I. Amal, S. H. Lee and K. H. Kim, Curr. Appl. Phys., 14, 916 (2014). https://doi.org/10.1016/j.cap.2014.04.005
  23. L. Shi, C. Wang, J. Wang, Z. Fang and H. Xing, Adv. Mater. Phys. Chem., 6, 305 (2016). https://doi.org/10.4236/ampc.2016.612029
  24. T. Raadik, M. Grossberg, J. Krustok, M. Kauk-Kuusik, A. Crovetto, R. Bolt Ettlinger, O. Hanson and J. Schou, Appl. Phys. Lett., 110, 261105 (2017). https://doi.org/10.1063/1.4990657