DOI QR코드

DOI QR Code

Acoustic Modeling in a Gas Turbine Combustor with Backflow Using a Network Aproach

역류형 가스터빈 연소기에서 네트워크 접근법을 이용한 음향장 모델링

  • Son, Juchan (Department of Mechanical Engineering, Gangneung-Wonju National University) ;
  • Hong, Sumin (Department of Mechanical Engineering, Gangneung-Wonju National University) ;
  • Hwang, Jeongjae (Department of Gas Turbine Research, Korea Institute of Machinery and Materials) ;
  • Kim, Min Kuk (Department of Gas Turbine Research, Korea Institute of Machinery and Materials) ;
  • Kim, Daesik (Department of Mechanical Engineering, Gangneung-Wonju National University)
  • Received : 2021.06.07
  • Accepted : 2021.09.07
  • Published : 2021.10.31

Abstract

In this work, we have developed a 1D network model aimed at predicting eigenvalues for resonance frequency analysis in a lab-scale industrial gas turbine single nozzle combustion system. Modern industrial gas turbines generally adopt combustors with very complex geometry and flow path to meet various design requirements simultaneously. The current study has developed a network model for combustion systems with backflow at the same axial location. The modeling results of resonance frequencies and mode distributions for a given system using the network model were validated from comparisons with prediction results using a 3D Helmholtz solver.

본 연구에서는 실험실 규모의 산업용 가스터빈 싱글노즐 연소기에서의 공진주파수 해석을 위한 고유값 도출을 목적으로 하는 1D 네트워크 모델을 개발하였다. 현대의 산업용 가스터빈은 다양한 요구 조건을 동시에 만족시키기 위하여 일반적으로 매우 복잡한 구조와 유동의 형태를 가지고 있다. 이러한 복잡한 연소기 특징 중 하나인 동일한 축 방향 위치에서 서로 반대 방향의 유동 흐름을 갖는 시스템에서의 네트워크 모델 구현을 목적으로 하였다. 네트워크 모델을 통해 음향장을 해석한 결과를 실제 형상을 그대로 해석한 헬름홀츠 기반의 모델링 결과와 비교하였을 때, 공진주파수와 모드 분포로부터 해석의 타당성을 검증하였다.

Keywords

Acknowledgement

본 연구는 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원(20206710100030)을 받아 수행된 연구 결과입니다.

References

  1. Huang, Y., Sung, H.G., Hsieh, S.Y. and Yang, V., "Large-Eddy Simulation of Combustion Dynamics in Lean-Premixed Swirl-Stabilized Combustor," Journal of Propulsion and Power, Vol. 19, No. 3, pp. 722-734, 2003. https://doi.org/10.2514/2.6182
  2. Wolf, P., Balakrishnan, R., Staffelbach, G., Gicquel, L.Y.M. and Poinsot, T., "Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers," Flow, Turbulence and Combustion, Vol. 88(1-2), 191-206, 2011. https://doi.org/10.1007/s10494-011-9367-7
  3. Lieuwen, T., "Modeling Premixed Combustion-Acoustic Wave Interactions: A Review," Journal of Propulsion and Power, Vol. 21, No. 4, pp. 591-599, 2003. https://doi.org/10.2514/1.9021
  4. Stow, S.R. and Dowling, A.P., "Thermoacoustic Oscillations in an Annular Combustor," ASME Turbo Expo 2001, New Orleans, Louisiana, U.S.A., ASME GT2001-0037, Jun. 2001.
  5. Pyo, Y., Yoon, M. and Kim, D., "Combustion Instability Analysis Using Network Model in an Annular Gas Turbine Combustor," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 3, pp. 72-80, 2018. https://doi.org/10.6108/KSPE.2018.22.3.072
  6. Bloxsidge, G.J., Dowling, A.P. and Langhorne, P.J., "Reheat buzz: an acoustically coupled combustion instability. Part 2. Theory," Journal of Fluid Mechanics, 193(-1), 445, 1988. https://doi.org/10.1017/S0022112088002216
  7. Dowling, A.P., "Nonlinear self-excited oscillations of a ducted flame," Journal of Fluid Mechanics, Vol. 346, pp. 271-290, 1997. https://doi.org/10.1017/S0022112097006484
  8. Dowling, A.P., "A kinematic model of a ducted flame," Journal of Fluid Mechanics, Vol. 394, pp. 51-72, 1999. https://doi.org/10.1017/s0022112099005686
  9. Dowling, A.P., "Modeling and Control of Combustion Oscillations," ASME Turbo Expo 2005,Rebo-tahoe, Nevada, U.S.A., Jun. 2005.
  10. Morgans, A. and Dowling, A., "Model-Based Control of a Rijke Tube Combustion Instability," 11th AIAA/CEAS Aeroacoustics Conference, Monterey, California, U.S.A., AIAA 2005-2909, May 2005.
  11. Kim, S. and Kim, D., "Acoustic Transfer Function in a Multi-duct System and Its Application for Closed-loop Instability Analysis," Journal of Propulsion and Energy, Vol. 1, No. 1, pp. 57-65, 2020.
  12. Kim, J., Yoon, M. and Kim, D., "Combustion Stability Analysis Using Feedback Transfer Function," Journal of the Korean Society of Combustion, Vol. 21, No. 3, pp. 24-31, 2016. https://doi.org/10.15231/JKSC.2016.21.3.024
  13. Kim, D., "Linear Stability Analysis in a Gas Turbine Combustor Using Thermoacoustic Model," Journal of the Korean Society of Combustion, Vol. 17, No. 2, pp. 17-23, 2012.
  14. Pyo, Y., Park, H., Jung, S., Kim, D., "Acoustic Field Analysis using 1D Network Model in an Aero Gas Turbine Combustor," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 2, pp. 37-45, 2019.
  15. O. Lindman, M. Andersson, A. Bonaldo, A. Larsson, and J. Janczewski, "SGT-750 fuel flexibility: engine and rig tests," ASME Turbo Expo 2017, Charlotte, NC, U.S.A., Jun. 2017.
  16. A.P. Dowling and S.R. Stow, "Acoustic Analysis of Gas Turbine Combustors," J. Propuls. Power, Vol. 19, No. 5, pp. 751-764, 2003. https://doi.org/10.2514/2.6192
  17. Hubbard S. and Dowling, A.P., "Acoustic Instabilities in Premix Burners," 4th AIAA/CEAS Aeroacoustics Conference, Toulouse, France., Jun. 1998.
  18. Hubbard, S. and Dowling, A.P., "Acoustic Resonances of an Industrial Gas Turbine Combustion System," Journal of Engineering for Gas Turbines and Power, 123(4), 766, 2001. https://doi.org/10.1115/1.1370975
  19. Kim, M., Hwang, J., Kang, D., Lee, W., Min, K., Cho, J. and Kim, H., "Development of Gas Turbine Combustor for 300MWe-class Gas Turbine with 50 % Hydrogen Co-firing", 61th KOSCO SYMPOSIUM, pp. 193-194, May 2021.
  20. COMSOL Acoustics Module Users Guide pp. 51-121, 2010.