DOI QR코드

DOI QR Code

Combustion Properties of PCP/Nitramine/AP Propellants

PCP/Nitramine/AP 기반 추진제의 연소 특성 연구

  • Kim, Sung June (The 1st R&D Institute 1st Directorate, Agency for Defense Development)
  • Received : 2021.05.04
  • Accepted : 2021.06.22
  • Published : 2021.08.31

Abstract

This study aimed at preparing the solid propellants featuring high pressure exponent available for throttleable rocket system development. The combustion properties of solid propellant based on PCP as a prepolymer were investigated with the different nitramine oxidizer, HMX and HNIW. As a main oxidizer, HNIW could deliver higher burning rate, specific impulse and flame temperature than HMX. In addition, the introduction of AP as a co-oxidizer in PCP/Nitramine propellants could enhance burning rate, specific impulse and flame temperature, showing the lower pressure exponent with increasing the content of fine-sized AP, total solids and plasticizer. Moreover, we examined the temperature sensitivity on burning rate of propellants between 150 psia and 2,500 psia.

본 연구에서는 추력 제어용 추진제 조성 개발을 위해 고 압력지수 추진제를 만들고자 하였다. 프리폴리머로 PCP를 사용하며 니트라민 계열의 산화제인 HMX와 HNIW 기반 추진제를 제조하여 각각의 연소특성을 비교하였다. HMX에 비해 HNIW가 추진제의 연소속도, 비추력 그리고 화염온도에 큰 영향을 준다는 것을 알았다. 또한, AP를 조 산화제로 사용할 경우, 추진제의 연소속도, 비추력 및 화염온도는 미세 AP 함량, 총 고체 함량 그리고 가소제 양이 증가할수록 병행 상승하였으나, 압력지수는 오히려 낮게 나타났다. 그리고, 여러 압력 구간에서 온도에 따른 연소특성 변화를 알아보기 위해 150 psia부터 2,500 psia사이 구간에 대해 PCP/Nitramine/AP 추진제의 연소속도에 대한 온도 민감도를 측정하였다.

Keywords

References

  1. Burroughs, S., "Status of Army Pintle Technology for Controllable Thrust Propulsion," AIAA 2001-3598, 2001.
  2. Ostrander, M., Bergmans, J., Thomas, M. and Burroughs S., "Pintle motor challenges for tactical missile," AIAA 2000-3310, 2000.
  3. Godai, T. and M. Shimizu, "Pressure exponent of controllable solid rocket propellants," AIAA 72-1135, 1972.
  4. Smith-Kent, R., Loh, H. and Chwalowski, P, "Analytic contouring of pintle nozzle exit cone using computational fluid dyamics," AIAA 99-2645, 1999.
  5. Sayles, D.C., "Development of test motors for advanced controllable propellants," Journal of Spacecraft and Rockets, Vol. 12, No. 3, pp. 174-178, 2012. https://doi.org/10.2514/3.56962
  6. Beckstead M.W., "Overview of Combustion Mechanisms and Flame Structures for Advanced Solid Propellants," Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Progress in Astronautics and Aeronautics, Vol. 185, pp. 267-285, 2012.
  7. Sellas J.T., "A Review of the Parameters Affecting the Pressure Exponent in Composite Solid Propellants," 17th International annual conference of ICT, Karlsruhe, German, p. 21, July 1986.
  8. Becstead, M.W., Derr, R.L. and Price, C.F., "A Model of Composite Solid Propellant Combustion Based on Multiple Flames," AIAA Journal, Vol. 8, No. 12, pp. 2200-2207, 2012. https://doi.org/10.2514/3.6087
  9. Sutton, G.P., Rocket Propulsion Elements, 6th ed., John Wiley & Sons Inc., New York, N.Y., U.S.A., 1992.
  10. Jang, M.W., Kim, T., Jung, H. and Lee, D.B., "A Study on the Properties of Solid Propellants with Respect to the Crystal Phase of HNIW," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 3, pp. 44-50, 2019. https://doi.org/10.6108/KSPE.2019.23.3.044
  11. Kubota N., Takizuka M. and Fukuda T., "Combustion of Nitramine Composite Propellants," AIAA-81-1582, 1981.
  12. Beckstead, M.W. and McCarty, K.P., "Modeling Calculations for HMX Composite Propellants," AIAA 80-1167, 1980.
  13. Lim, S., Ha, D., Park, S. and Kim, Y., "Design and Fabrication of Hot Gas Components for DACS Applications," Proceeding of 2014 Spring Korean Society of Propulsion Engineers, Seoul, Korea, pp. 308-312, May 2014.