DOI QR코드

DOI QR Code

Development of a Pulse Light System for Treating Skin Pigmentation

피부의 색소치료를 위한 펄스 광 시스템의 개발

  • Jeun, Jong-Baeg (NuRi&G Engineering Co., Ltd) ;
  • Tack, Han-Ho (Department of Electronic Engineering, Gyeongnam National University of Science and Technology)
  • Received : 2020.12.01
  • Accepted : 2020.12.21
  • Published : 2021.01.31

Abstract

In this study the skin care system was designed and tested by introducing V-IPL(Variable-Intense Pulse Light) methods that allow various skin treatments. The discharge method, a new method of switching on the flash lamp sequentially according to the lesions, was used. Pulse shape control is implemented in the system using the conventional LC variable method and the switching method control method of the switching element. As a result, the pulse width could be varied up to 1[㎛] by using a microprocessor, and by turning on the flash lamp sequentially along the lesions the depth and width, the pulse shape and pulse shape could be more diverse. We could also make long pulses of up to 1~100[ms] in various pulse width. And the special differences between the existing system and the proposed system in this study are as follow. Existing system is one pulse(pulse width : 1~40ms) and proposed system is three pulse(pulse width : 1~100ms).

본 연구에서는 다양하게 피부치료가 가능한 V-IPL 방식을 도입하여 피부치료 시스템을 설계하여 실험하였고, 또한 병변에 따라 플래쉬 램프를 순차적으로 점등시키는 새로운 방식인 방전 방식을 이용하였으며, 기존의 LC 가변방식과 스위칭소자의 스위칭모드 제어방식을 활용하여 펄스 형상제어를 시스템에 구성하였다. 그 결과 마이크로프로세서를 이용하여 펄스폭이 1[㎛]까지 가변이 가능하였고, 깊이와 넓이에 따른 병변에 플래쉬 램프를 순차 점등시키므로써 펄스형상 및 펄스모양을 보다 다양하게 할 수 있었다. 그리고 펄스폭을 약 1~100[ms]까지 다양하게 긴 펄스를 만들 수 있었으며, 기존의 제품은 One pulse(pulse width : 1~40ms)이지만 제안한 제품은 Three pulse(pulse width : 1~100ms)로 특별한 차이가 있었다.

Keywords

References

  1. A. M. Luke, S. Mathew, M. M. Altawash, and B. M. Madan, "Laser: A review with their applications in oral medicine," Journal of Lasers in Medical Sciences, vol. 10, no. 4, pp. 234-329, Sep. 2019.
  2. J. Wilson and J. F. B. Bankse, "Lasers: Principles and applications," London : Prentice Hall, 2017.
  3. M. R. Treat, M. C. Oz, and L. S. Bass, "New technologies and future applications of urgical lasers," Lasers in General Surgery, pp. 705-742, 1992.
  4. L. V. Tarasov, Lasers Physics, Moscow : Mir Publications, 2016.
  5. L. Sharupich and N. Tugov, Optoeletronic, Moscow : Mir Publishers, 1987.
  6. R. R. Richards-Kortum, R. Rava, M. Fitzmaurice, L. Tong, N. B. Ratcliff, J. R. Kramer, and M. S, Feld, "A one-layer model of laser induced fluorescence for diagnosis of disease in human tissue: Application to atherosclerosis," IEEE Transactions on Biomedical Engineering, vol. 36, pp. 1222-1232, 1989. https://doi.org/10.1109/10.42117
  7. R. Baskaran, J. H. Lee, and S. G. Yang, "Clinical development of photodynamic agents and therapeutic applications," Biomaterials Research, vol. 22, no. 25, Sep. 2018.
  8. J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, London : Methuen, 1964.
  9. L. Lu, L. Shi, J. Secor, and R. Alfano, "Resonance raman scattering of beta-carotene solution excited by visible laser beams into second singlet state," Journal of Photochemistry and Photobiology B: Biology, vol. 179, pp. 18-22, 2018. https://doi.org/10.1016/j.jphotobiol.2017.12.022